首页下载资源人工智能《Python数据分析与应用》《Python数据分析与数据挖掘实战》课中、课后练习题源码-Python-Data-Analysis.zip

ZIP《Python数据分析与应用》《Python数据分析与数据挖掘实战》课中、课后练习题源码-Python-Data-Analysis.zip

weixin_4592264436.05MB需要积分:1

资源文件列表:

《Python数据分析与应用》《Python数据分析与数据挖掘实战》课中、课后练习题源码_Python-Data-Analysis 大约有371个文件
  1. Python-Data-Analysis-master/.gitattributes 271B
  2. Python-Data-Analysis-master/readme.md 203B
  3. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/2_1.py 2.95KB
  4. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/2_2.py 1.34KB
  5. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/2_3.py 2.08KB
  6. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/2_4.py 3.99KB
  7. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/2_5.py 919B
  8. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/__init__.py
  9. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/data/iris_sepal_length.csv 600B
  10. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/test/3.1.py 333B
  11. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/test/__init__.py
  12. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/tmp/arr.txt 52B
  13. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/tmp/savez_arr.npz 570B
  14. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/tmp/save_arr.npy 528B
  15. Python-Data-Analysis-master/A_chapter2-Numpy数值计算基础/tmp/__init__.py
  16. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3.1_pyplot.py 13.7KB
  17. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3.2_line.py 1.87KB
  18. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3.2_scatter.py 1.63KB
  19. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_2_3.py 3.25KB
  20. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_3.histogram.py 1.73KB
  21. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_3_4.py 4.17KB
  22. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_test_1.py 1.52KB
  23. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_test_2.py 1.68KB
  24. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/3_test_xiti.py 811B
  25. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/__init__.py
  26. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/data/iris.npz 6.47KB
  27. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/data/populations.npz 2.26KB
  28. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/data/国民经济核算季度数据.npz 11.15KB
  29. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/1996——2015人口关系数据特征散点图与折线图.png 102.6KB
  30. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/1996——2015人口关系数据特征散点图与折线图与饼图.png 183.08KB
  31. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017各产业国民生产总值箱线图.png 21.31KB
  32. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年各产业季度生产总值散点图.png 55.12KB
  33. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度各产业生产总值折线图.png 74.23KB
  34. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度各产业生产总值折线散点图.png 74.23KB
  35. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度各行业生产总值折线子图.png 120.55KB
  36. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度各行业生产总值散点子图.png 126.94KB
  37. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度生产总值折线图.png 51.82KB
  38. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度生产总值散点图.png 42.67KB
  39. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2000-2017年季度生产总值点线图.png 53.04KB
  40. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2017年第一季度各产业国民生产总值直方图.png 20.26KB
  41. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/2017年第一季度各产业生产总值占比饼图.png 27.98KB
  42. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/sincos.png 38.65KB
  43. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/y=x^2.png 26.12KB
  44. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/__init__.py
  45. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/修改rc参数后sin曲线.png 26.45KB
  46. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/国民生产总值分散情况箱线图.png 59.51KB
  47. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/国民生产总值构成分布直方图.png 77.92KB
  48. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/国民生产总值构成分布饼图.png 141.13KB
  49. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/无法显示中文标题sin曲线.png 26.55KB
  50. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/显示中文标题sin曲线.png 26.83KB
  51. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/鸢尾花特征散点图.png 209.48KB
  52. Python-Data-Analysis-master/A_chapter3-Matplotlib数据可视化基础/tmp/默认sin曲线.png 27.64KB
  53. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.1.1_mysql.py 1.27KB
  54. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.1.2_read_csv.py 1.45KB
  55. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.1.4_read_sql.py 1.03KB
  56. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.2.1-dataframe.py 4.51KB
  57. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.2.4_test_pd.py 2.03KB
  58. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.3.1_test_pd2.py 3.44KB
  59. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.4.1_groupby.py 3.09KB
  60. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.5.1_pivot_table.py 2.35KB
  61. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4.5.2__crosstab.py 1.3KB
  62. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4_test_1.py 837B
  63. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4_test_2.py 1.02KB
  64. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4_test_3.py 1.01KB
  65. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4_test_4.py 617B
  66. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/4_xiti.py 573B
  67. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/__init__.py
  68. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/meal_order_detail.xlsx 896.6KB
  69. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/meal_order_detail1.sql 563.37KB
  70. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/meal_order_detail2.sql 743.42KB
  71. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/meal_order_detail3.sql 735.5KB
  72. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/meal_order_info.csv 111.94KB
  73. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/users.xlsx 132.63KB
  74. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/数据特征说明.xlsx 13.09KB
  75. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/test_data/mtcars.csv 1.74KB
  76. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/test_data/Training_LogInfo.csv 18.08MB
  77. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/test_data/Training_Master.csv 19.35MB
  78. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/test_data/Training_Userupdate.csv 14.61MB
  79. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/data/test_data/数据特征说明.xlsx 10.82KB
  80. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/tmp/orderInfo.csv 96.08KB
  81. Python-Data-Analysis-master/A_chapter4-Pandas统计分析基础/tmp/userInfo.xlsx 123.35KB
  82. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5.1.py 4.56KB
  83. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5.2_clean_data.py 6.87KB
  84. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5.3_standard_data.py 1.9KB
  85. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5.4_transform_data.py 1.65KB
  86. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5_test_1.py 740B
  87. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5_test_2.py 509B
  88. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5_test_3.py 577B
  89. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/5_xiti.py 1.07KB
  90. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/__init__.py
  91. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/detail.csv 830.04KB
  92. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/meal_order_detail1.sql 565.69KB
  93. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/meal_order_detail2.sql 743.42KB
  94. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/meal_order_detail3.sql 735.5KB
  95. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/meal_order_info.csv 111.94KB
  96. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/users_info.xlsx 86.97KB
  97. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/数据特征说明.xlsx 13.1KB
  98. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/alarm.csv 783B
  99. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/ele_loss.csv 1.75KB
  100. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/missing_data.csv 472B
  101. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/model.csv 2.64KB
  102. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/new_missing_data.csv 709B
  103. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/tmpsales.csv 709B
  104. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/data/test/数据特征说明.xlsx 9.35KB
  105. Python-Data-Analysis-master/A_chapter5-使用Pandas进行数据预处理/tmp/菜品异常数据识别.png 9.08KB
  106. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6.1_datasets.py 4.8KB
  107. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6.3_sklearn_SVM.py 6.58KB
  108. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6_2_K-Means.py 3.54KB
  109. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6_4_sklearn_Linear_Regresion.py 3.36KB
  110. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6_test_1.py 5.21KB
  111. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/6_xiti.py 1.11KB
  112. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/__init__.py
  113. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/abalone.data 187.46KB
  114. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/cal_housing.data 1.98MB
  115. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/seeds_dataset.txt 9.17KB
  116. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/test/wine.csv 10.7KB
  117. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/test/winequality.csv 82.23KB
  118. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/data/test/数据特征说明.xlsx 10.85KB
  119. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/tmp/test3_wine_FMI评价折线图.png 29.33KB
  120. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/tmp/wine_quality_target线性回归预测.png 123.22KB
  121. Python-Data-Analysis-master/A_chapter6-使用Scikit-Learn构建模型/tmp/聚类结果.png 20.23KB
  122. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/7_1_LRFMC.py 1.54KB
  123. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/7_3_kmeans_LRFMC.py 494B
  124. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/7_test.py 2.01KB
  125. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/7_xiti.py 940B
  126. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/__init__.py
  127. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/data/air_data.csv 13.21MB
  128. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/data/test/credit_card.csv 4.19MB
  129. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/data/test/data.csv 381B
  130. Python-Data-Analysis-master/A_chapter7-航空公司客户价值分析/tmp/airline_scale.npz 2.84MB
  131. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/__init__.py
  132. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/8.1_Lasso.py 2.25KB
  133. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/8_4_LinearSVR.py 1.88KB
  134. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/8_test_1.1.py 1.46KB
  135. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/8_test_1.py 2.04KB
  136. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/GM11.py 749B
  137. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/code/__pycache__/GM11.cpython-37.pyc 1.09KB
  138. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/data/data.csv 2.02KB
  139. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/data/test/income_tax.csv 1.11KB
  140. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/data/test/income_tax_Lasso.csv 1.02KB
  141. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/data/test/income_tax_test.xls 5.5KB
  142. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/data/test/income_tax_test_LinearSVR.xls 5.5KB
  143. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/tmp/new_reg_data.csv 1.29KB
  144. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/tmp/new_reg_data_GM11.xls 5.5KB
  145. Python-Data-Analysis-master/A_chapter8-财政收入预测分析(Lasso+svm.LinearSVR)/tmp/new_reg_data_GM11_revenue.xls 9.5KB
  146. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/__init__.py
  147. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/code/9.1.py 1.59KB
  148. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/data/original_data.xls 6.47MB
  149. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/data/test_data.xlsx 15.72KB
  150. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/data/water_hearter.xlsx 607.18KB
  151. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/data/water_heater.xls 3.02MB
  152. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/data/water_heater_log.xlsx 8.39KB
  153. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/tmp/sj.csv 2.44KB
  154. Python-Data-Analysis-master/A_chapter9-家用热水器用户行为分析与事件识别(BP神经网络MLPClassifier)/tmp/water_heart.csv 978.04KB
  155. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/1_dataExplore.ipynb 60.43KB
  156. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/1_dataExplore.py 2.55KB
  157. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/2.jpg 44.17KB
  158. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/2_1fullMissing.ipynb 21.19KB
  159. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/2_1fullMissing.py 6.49KB
  160. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/3_1buildModel.ipynb 66.51KB
  161. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/3_1buildModel.py 5.66KB
  162. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/3_2_10-fold cross-validation.ipynb 1MB
  163. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/3_2_10-fold_cross-validation.py 2.76KB
  164. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/cm_plot.py 650B
  165. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/compare.csv 326B
  166. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/confusionMatrix.jpg 15.15KB
  167. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/confusionMatrix1.jpg 15.48KB
  168. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/lagij.csv 336B
  169. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/lagrange.csv 663B
  170. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/LOC.jpg 22.42KB
  171. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/missing_data.xls 24.5KB
  172. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/model.xls 39.5KB
  173. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/net.model 14.41KB
  174. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/newij.csv 335B
  175. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/newton.csv 664B
  176. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/nls.csv 1.79KB
  177. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/pic.xlsx 10.54KB
  178. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/README.md 557B
  179. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/Series.csv 619B
  180. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/Serij.csv 308B
  181. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/tree.pkl 4.33KB
  182. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/usertypes.jpg 29.33KB
  183. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/.ipynb_checkpoints/1_dataExplore-checkpoint.ipynb 60.43KB
  184. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/.ipynb_checkpoints/2_1fullMissing-checkpoint.ipynb 21.19KB
  185. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/.ipynb_checkpoints/3_1buildModel-checkpoint.ipynb 66.51KB
  186. Python-Data-Analysis-master/B_chapter06-电力盗窃电用户自动识别(CART+LM)/.ipynb_checkpoints/3_2_10-fold cross-validation-checkpoint.ipynb 1MB
  187. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/1_1data_explore.ipynb 10.65KB
  188. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/2_1data_preprocess.ipynb 5.49KB
  189. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/3_1buildModel.ipynb 120.22KB
  190. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/air_data.csv 13.75MB
  191. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/radar1.py 8.37KB
  192. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/radar1.pyc 6.97KB
  193. Python-Data-Analysis-master/B_chapter07-航空公司客户价值分析(kmeans)/README.md 363B
  194. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/1_1dataPreprocess.ipynb 13.5KB
  195. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/1_1dataPreprocess.py 3.14KB
  196. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/2_1buildModel.ipynb 3.08KB
  197. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/2_1buildModel.py 1.27KB
  198. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/apriori.txt 19.07KB
  199. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/apriori.xlsx 30.71KB
  200. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/data.xls 189KB
  201. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/data_processed.xlsx 5.81KB
  202. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/README.md 255B
  203. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/selfapriori.py 2.31KB
  204. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/selfapriori.pyc 2.29KB
  205. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/.ipynb_checkpoints/1_1dataPreprocess-checkpoint.ipynb 13.5KB
  206. Python-Data-Analysis-master/B_chapter08-中医证型关联规则挖掘(Apriori关联规则)/.ipynb_checkpoints/2_1buildModel-checkpoint.ipynb 3.08KB
  207. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/1_1dataPreprocessing.py 6.41KB
  208. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/1_2Alldata.py 680B
  209. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/2_1buildModel.py 2.21KB
  210. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/ALLDATA.xlsx 24.35KB
  211. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/cm_plot.py 650B
  212. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/moment.csv 22.57KB
  213. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/README.md 407B
  214. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/svcmodel.model 29.66KB
  215. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/testPre.xlsx 5.09KB
  216. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/trainPre.xlsx 5.1KB
  217. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/type1.csv 5.83KB
  218. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/type2.csv 5.01KB
  219. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/type3.csv 8.84KB
  220. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/type4.csv 2.79KB
  221. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/type5.csv 794B
  222. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/.ipynb_checkpoints/1_2Alldata-checkpoint.ipynb 37.17KB
  223. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/.ipynb_checkpoints/2_1buildModel-checkpoint.ipynb 20.84KB
  224. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/.ipynb_checkpoints/svm_waterimg-checkpoint.ipynb 72B
  225. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/.ipynb_checkpoints/Untitled-checkpoint.ipynb 15.79KB
  226. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/Finally.py 5.53KB
  227. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/test.jpg 249.74KB
  228. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/a.py 2.64KB
  229. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/b.py 2.15KB
  230. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/c.py 1021B
  231. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/d.py 1.43KB
  232. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/e.py 831B
  233. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/f.py 1.44KB
  234. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/g.py 1.37KB
  235. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/test0.py 3.69KB
  236. Python-Data-Analysis-master/B_chapter09-基于水色图像的水质评价(SVM)/img_cut_pix/testCode/test1.py 3.89KB
  237. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/1TimeWaterDivide.xlsx 333.04KB
  238. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/1_1dataGuiyue.ipynb 18.74KB
  239. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/1_1dataGuiyue.py 1.47KB
  240. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_1dataExchange_divideEvent.ipynb 57.71KB
  241. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_1dataExchange_divideEvent.py 3.69KB
  242. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_2dataExchange_thresholdOptimization.ipynb 33.56KB
  243. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_2dataExchange_thresholdOptimization.py 5.46KB
  244. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_3dataExchange_attributeConstruction.ipynb 117.69KB
  245. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_3dataExchange_attributeConstruction.py 14.85KB
  246. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/2_3_1time_gap_compute.py 8.18KB
  247. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/3_1modelBuild.ipynb 141.8KB
  248. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/3_1modelBuild.py 3.39KB
  249. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/attrConst_results.xlsx 23.06KB
  250. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/cm_plot.py 590B
  251. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/cm_plot.pyc 763B
  252. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/dataExchange_divideEvent.xlsx 360.69KB
  253. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/data_filter.xlsx 14.71KB
  254. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/data_for_attr_const.xlsx 756.32KB
  255. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/data_guiyue.xlsx 727.29KB
  256. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/net.model 18.11KB
  257. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/original_data.xls 6.47MB
  258. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/README.md 1.37KB
  259. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/test_neural_network_data.xls 25.5KB
  260. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/test_output_data.xls 5.5KB
  261. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/thresholdOptimization.xlsx 333.84KB
  262. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/threshold_numofCase.jpg 29.03KB
  263. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/train_neural_network_data.xls 27.5KB
  264. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/Water-pause-times.jpg 51.52KB
  265. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/.ipynb_checkpoints/1_1dataGuiyue-checkpoint.ipynb 18.74KB
  266. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/.ipynb_checkpoints/2_1dataExchange_divideEvent-checkpoint.ipynb 57.73KB
  267. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/.ipynb_checkpoints/2_2dataExchange_thresholdOptimization-checkpoint.ipynb 33.46KB
  268. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/.ipynb_checkpoints/2_3dataExchange_attributeConstruction-checkpoint.ipynb 117.33KB
  269. Python-Data-Analysis-master/B_chapter10-家用电器用户行为分析与事件识别(DNN)/.ipynb_checkpoints/3_1modelBuild-checkpoint.ipynb 52.71KB
  270. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/1_dataExploration.ipynb 103.96KB
  271. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/1_dataExploration.py 2.08KB
  272. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/2_attrsConstruction.ipynb 17.74KB
  273. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/2_attrsConstruction.py 1.81KB
  274. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1buildModel_C.ipynb 31.58KB
  275. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1buildModel_C.py 9.95KB
  276. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1_1buildModel.ipynb 115.65KB
  277. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1_2buildModel.ipynb 39.04KB
  278. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1_3buildModel.ipynb 27.55KB
  279. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1_4buildModel_HQ_ARIMA.ipynb 12.01KB
  280. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_1_4buildModel_HQ_ARIMA.py 4.38KB
  281. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/3_2buildModel_D.ipynb 42.88KB
  282. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/acf_pacf.jpg 100.05KB
  283. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/attrsConstruction.xlsx 6.8KB
  284. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/c.jpg 33.77KB
  285. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/d.jpg 32.86KB
  286. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/dataCleaned.xlsx 8.99KB
  287. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/data_predict_pic.jpg 79.14KB
  288. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/discdata.xls 44.5KB
  289. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/pedictdata_C.xlsx 5.55KB
  290. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/pedictdata_C_AIC_ARMA.xlsx 5.55KB
  291. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/pedictdata_C_BIC_ARIMA.xlsx 5.55KB
  292. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/pedictdata_C_BIC_ARMA.xlsx 5.55KB
  293. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/pedictdata_D.xlsx 5.54KB
  294. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/predictResultPicture.ipynb 69.77KB
  295. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/predictResultPicture.py 2.19KB
  296. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/REMDME.md 552B
  297. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/steadyCheck.ipynb 77.18KB
  298. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/steadyCheck.py 4.01KB
  299. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/1_dataExploration-checkpoint.ipynb 110.39KB
  300. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/2_attrsConstruction-checkpoint.ipynb 29.55KB
  301. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_1buildModel_C-checkpoint.ipynb 31.58KB
  302. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_1_1buildModel-checkpoint.ipynb 37.98KB
  303. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_1_2buildModel-checkpoint.ipynb 39.05KB
  304. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_1_3buildModel-checkpoint.ipynb 36.45KB
  305. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_1_4buildModel_HQ_ARIMA-checkpoint.ipynb 12.01KB
  306. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/3_2buildModel_D-checkpoint.ipynb 42.88KB
  307. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/predictResultPicture-checkpoint.ipynb 69.77KB
  308. Python-Data-Analysis-master/B_chapter11-应用系统负载分析与磁盘容量预测(ARIMA)/.ipynb_checkpoints/steadyCheck-checkpoint.ipynb 77.18KB
  309. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/1_2_Data Exploration and Analysis.ipynb 61.48KB
  310. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/3_webpage_rank.ipynb 58.91KB
  311. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/readme.md 403B
  312. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/1_1_3type_counts.xlsx 5.5KB
  313. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/1_4type107.xlsx 5.35KB
  314. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/2_2_2clickTimes.xlsx 5.68KB
  315. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/2_3_4typeID.xlsx 5.66KB
  316. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/2_3_5lookMorethan100.xlsx 6.03KB
  317. Python-Data-Analysis-master/B_chapter12-电子商务网站用户行为分析及服务推荐(协同推荐)/tmp/3_flipPageResult.xlsx 6.27KB
  318. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/1dataExplore.ipynb 45.96KB
  319. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/1dataExplore.py 1.58KB
  320. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/1_1summaryMeasure.xlsx 5.87KB
  321. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/1_2relatedAnalysis.csv 1.02KB
  322. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/1_net.model 13.59KB
  323. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_1Lasso.ipynb 40.97KB
  324. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_1Lasso.py 3.84KB
  325. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_2greyPredict.ipynb 37.68KB
  326. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_2greyPredict.py 3.22KB
  327. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_2_1greyPredict.xlsx 6.65KB
  328. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_3LMPredict.ipynb 912.07KB
  329. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_3LMPredict.py 2.02KB
  330. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_1_3_1revenue.xlsx 6.92KB
  331. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_1Lasso.ipynb 10.88KB
  332. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_1Lasso.py 1.43KB
  333. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_2greyPredict.ipynb 18.5KB
  334. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_2greyPredict.py 1.21KB
  335. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_2_1greyPredict.xlsx 5.96KB
  336. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_3LMPredict.ipynb 320.84KB
  337. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_3LMPredict.py 1.91KB
  338. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_2_3_1zengzhi.xlsx 6.11KB
  339. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_3_1zfxjjsrPredict.ipynb 49.53KB
  340. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_3_1zfxjjsrPredict.py 1.64KB
  341. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/2_net.model 13.59KB
  342. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/GM11.py 749B
  343. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/README.md 396B
  344. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/revenue.jpg 27.3KB
  345. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/zengzhi.jpg 32.84KB
  346. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/zhengfujijin.jpg 26.55KB
  347. Python-Data-Analysis-master/B_chapter13-财政收入影响因素分析及预测模型(Lasso+GM11+LM+LinearSVR)/zhengfujijin2.jpg 29.11KB
  348. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/1_1standardization.ipynb 19.57KB
  349. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/1_1standardization.py 511B
  350. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/1_1standardization.xlsx 23.05KB
  351. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/2_1buildModel.ipynb 125.12KB
  352. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/2_1buildModel.py 2.91KB
  353. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/business_circle.xls 48KB
  354. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/puxijulei.jpg 21.1KB
  355. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/README.md 281B
  356. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/type_0.png 40.7KB
  357. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/type_1.png 55.71KB
  358. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/type_2.png 30.79KB
  359. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/.ipynb_checkpoints/1_1standardization-checkpoint.ipynb 19.57KB
  360. Python-Data-Analysis-master/B_chapter14-基于基站定位数据的商圈分析(层次聚类AgglomerativeClustering)/.ipynb_checkpoints/2_1buildModel-checkpoint.ipynb 125.12KB
  361. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/1_1my_meidi_jd.txt 4MB
  362. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/1_csvTotxt.ipynb 9.94KB
  363. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/2_1my_meidi_jd_delduplis.txt 3.9MB
  364. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/2_delduplis.ipynb 3.67KB
  365. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/3_1my_meidi_jd_process_end_负面情感结果.txt 534.47KB
  366. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/3_2my_meidi_jd_process_end_正面情感结果.txt 2.73MB
  367. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/3_del_prefix.ipynb 1.72KB
  368. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/4_cutwords.ipynb 1.99KB
  369. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/5_LDA.ipynb 10.67KB
  370. Python-Data-Analysis-master/B_chapter15-电商产品评论数据情感分析(LED)/README.md 540B
  371. 《Python数据分析与应用》《Python数据分析与数据挖掘实战》课中、课后练习题源码_Python-Data-Analysis/项目内附说明/如果解压失败请用ara软件解压.txt 42B

资源介绍:

《Python数据分析与应用》《Python数据分析与数据挖掘实战》课中、课后练习题源码_Python-Data-Analysis
# 此代码是《Python数据分析与挖掘实战》的实战部分的第十章的完整代码 《家用电器用户行为分析与事件识别》 在作者给出的基础代码上添加的内容如下: 1)【】在数据规约部分: 书中提到:规约掉热水器"开关机状态"=="关"且”水流量”==0的数据,说明热水器不处于工作状态,数据记录可以规约掉。但由后文知,此条件不能进行规约 因为,"开关机状态"=="关"且”水流量”==0可能是一次用水中的停顿部分,删掉后则无法准确计算关于停顿的数据 2)【】在一次完整用水事件的划分模型中: 将时间间隔列数据离散并面元,探索了不同时间间隔中,用水事件的个数; 画用水停顿时间间隔频率分布直方图; 确定一次用水事件停顿阈值,然后划分一次完整用水事件。 3)【】用水事件阈值寻优模型: 通过频率分布直方图-确定阈值的变化与划分得到的事件个数关系 通过图像中斜率指标-确定阈值的变化与划分得到的事件个数关系 4)【】属性构造中: 原书中只给出了需要构造的属性的定义,并未给出具体代码,本文给出了具体的代码;并给出了两种方法求用水事件的时间间隔 5)【】模型构造: 添加了显示混淆矩阵可视化预测结果,查看训练结果正确率
100+评论
captcha