首页下载资源大数据模拟退火算法求解VRP问题 车辆路径问题Matlab程序

ZIP模拟退火算法求解VRP问题 车辆路径问题Matlab程序

qq_5015061718.85KB需要积分:1

资源文件列表:

VRP_SA_Matlab.zip 大约有21个文件
  1. VRP-using-SA-with-Matlab-master/
  2. VRP-using-SA-with-Matlab-master/.gitignore 10B
  3. VRP-using-SA-with-Matlab-master/SA_VRP_Points/
  4. VRP-using-SA-with-Matlab-master/SA_VRP_Points/calculateCost.m 264B
  5. VRP-using-SA-with-Matlab-master/SA_VRP_Points/createNeibor.m 1.04KB
  6. VRP-using-SA-with-Matlab-master/SA_VRP_Points/hk48.tsp 9.97KB
  7. VRP-using-SA-with-Matlab-master/SA_VRP_Points/initModel.m 963B
  8. VRP-using-SA-with-Matlab-master/SA_VRP_Points/isFeasible.m 319B
  9. VRP-using-SA-with-Matlab-master/SA_VRP_Points/plotSolution.m 764B
  10. VRP-using-SA-with-Matlab-master/SA_VRP_Points/randomSol.m 79B
  11. VRP-using-SA-with-Matlab-master/SA_VRP_Points/sa.m 1.32KB
  12. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/
  13. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/calculateCost.m 264B
  14. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/createNeibor.m 1.04KB
  15. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/createNeibor.m~ 778B
  16. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/hk48.tsp 9.97KB
  17. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/initModel.m 355B
  18. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/isFeasible.m 319B
  19. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/randomSol.m 79B
  20. VRP-using-SA-with-Matlab-master/SA_VRP_tspInstance/sa.m 1022B
  21. VRP-using-SA-with-Matlab-master/readme.md 4.02KB

资源介绍:

车辆路径问题(Vehicle Routing Problem,VRP)是一个经典的组合优化问题,涉及如何有效地分配车辆去访问多个客户点,并在满足约束条件的情况下最小化总行驶距离或成本。 假设有5个客户需求点和2辆车,每辆车的容量都足够大,可以服务所有客户。客户点之间的距离如下: - 客户点1到客户点2的距离为5 - 客户点2到客户点3的距离为6 - 客户点3到客户点4的距离为7 - 客户点4到客户点5的距离为8 - 客户点5到客户点1的距离为9 - 车辆起始点(仓库)到每个客户点的距离分别为:仓库到客户点1为10,仓库到客户点2为12,仓库到客户点3为15,仓库到客户点4为6,仓库到客户点5为8。 随机生成两个初始解,例如:路径1: 客户点1 → 客户点2 → 客户点3 → 客户点4 → 客户点5,路径2: 仓库 → 客户点1 → 客户点2 → 客户点3 → 客户点4 → 客户点5。计算总距离:路径1为26,路径2为42。 在每次迭代中,对当前解进行扰动产生新解。扰动可以通过交换、插入或反转操作实现。
模拟退火 Vehicle Routing Problem (VRP) using Simulated Annealing (SA) with Matlab > Fore more information please visit: www.lzane.com/mo-ni-tui-huo-vehicle-routing-problem-vrp-using-simulated-annealing-sa-with-matlab ### Simulation 让我们来想一个特例,80座城市,分布在四个角上,仓库在正中间,总共有四辆车。那么路程最短的解很明显可以想象出是每辆车分别去访问一个角。matlab工程在文末附件部分给出,仿真结果如下: ![](https://www.lzane.com/mo-ni-tui-huo-vehicle-routing-problem-vrp-using-simulated-annealing-sa-with-matlab/SA_VRP.gif) 观察下图,可以看出一开始温度较高的时候,容易接受一个比自己差一点的解,从而跳出局部最优解,随着时间推移,温度降下来之后,就基本上不能再接受比自己再差的解了。 --------------- 使用Matlab用模拟退火(SA)解决VRP问题。首先什么是VRP问题? 大家应该都知道旅行商问题(TSP,Traveling Salesman Problem),即求一个旅行家从一个仓库出发,通过沿途所有城市,再回到仓库所需要的最短路径。TSP问题中只有一个旅行商,那我们如何去解决有多个旅行商(车辆)同时送货的问题呢? ### VRP 这就引出了VRP问题,即在TSP问题的基础上,加上两个限定条件: - 有多个旅行商(车辆)同时送货。 - 每个旅行商(车辆)能携带的货物量(capacity)。 也就是说,TSP问题是VRP问题的一个特例(不考虑capacity并且只有一辆车的情况)。 现在为了简化问题,我们先不考虑汽车容量,只考虑有多个旅行商(车辆)时我们应该如何解决这个问题。 下图是一个TSP问题的邻接矩阵 (D是仓库) 我们从[ABC]随机生成一个排列组合,然后再将D接到这个序列的两头即得出了一条路线。 现在考虑VRP问题,假设现在我们有两辆汽车,其实我们需要做的只是在原来的矩阵多加一行一列,然后把一辆车当成是城市,也可以理解成有多少辆车就有多少个仓库,但他们在地图上其实是一点,然后对[A B C D1]进行排列组合,即可得到: 然后把D2加到这个序列两头,就可以生成两条路线了(1. D-B-A-D 2.D-C-D)这样就把一个VRP问题装换成TSP问题了。 不过有两个方面要注意的: - 生成的序列两头不能是D - 不能有两个D连在一起 这两种情况都相当于少了一辆车 ### 模拟退火 SA 首先看这张图,如果采用一般的贪心算法求最大值,那么当搜索到达A之后,就不会继续向前了,这就陷入了局部最优解。 SA模拟退火算法就是解决这个问题的一个办法,模仿金属冶炼时的退火过程,以一定概率接受一个更差一点的解,从而跳出局部最优解。 具体算法的实现请参照文末参考文献,这里只是简单带过 - 假设温度比设置的最低温度高 - 假如生成的解比原来的解更优,则接受生成的较优解。 - 假如生成的解比原来的差,则计算 **P(dE)=exp(dE/(kT))**, 以一定的概率接受这个较差解,然后降温。 - 生成一个neighbor,重复整个过程。 生成neignbor的方法也多种多样,比如说: - swap - insert - reverse ###### 参考文献: - "Improvement heuristics for the Vehicle Routing Problem based on Simulated Annealing" —— Alex Van Breedam ###### matlab工程代码: https://github.com/lzane/VRP-using-SA-with-Matlab www.lzane.com
100+评论
captcha