ZIP22043104+范纬.zip 3.52MB

2401_85785612需要积分:1(1积分=1元)

资源文件列表:

22043104+范纬.zip 大约有11个文件
  1. 22043104+范纬/
  2. 22043104+范纬/第一次作业.docx 279.18KB
  3. 22043104+范纬/第七次作业.docx 141.03KB
  4. 22043104+范纬/第三次作业.docx 124.77KB
  5. 22043104+范纬/第九次作业.docx 1.01MB
  6. 22043104+范纬/第二次作业.docx 80.66KB
  7. 22043104+范纬/第五次作业.docx 552.54KB
  8. 22043104+范纬/第八次作业.docx 664.06KB
  9. 22043104+范纬/第六次作业.docx 149.53KB
  10. 22043104+范纬/第十次作业.docx 594.46KB
  11. 22043104+范纬/第四次作业.docx 133.33KB

资源介绍:

22043104+范纬.zip
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1.</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">import numpy as np</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">import pandas as pd</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">import matplotlib.pyplot as plt</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">from mpl_toolkits.mplot3d import Axes3D</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">import warnings</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">warnings.filterwarnings(action = 'ignore')</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">%matplotlib inline</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">plt.rcParams['font.sans-serif']=['SimHei'] </div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">plt.rcParams['axes.unicode_minus']=False</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.datasets import make_blobs</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.feature_selection import <span class="_ _0"> </span>f_classif</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">from sklearn import decomposition</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.cluster import KMeans,AgglomerativeClustering</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.metrics import silhouette_score,calinski_harabasz_score</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">import scipy.cluster.hierarchy as sch</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">from itertools import cycle</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">from matplotlib.patches import Ellipse</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.mixture import GaussianMixture</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">N=100</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">X1, <span class="_ _1"></span>y1 <span class="_ _1"></span>= <span class="_ _1"></span>make_blobs(n_samples=N, <span class="_ _1"></span>centers=4, <span class="_ _1"></span>n_features=2,random_state=0) <span class="_ _2"> </span>#2<span class="_ _3"> </span><span class="ff2">特征</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">X2, <span class="_ _1"></span>y2 <span class="_ _1"></span>= <span class="_ _4"></span>make_blobs(n_samples=N, <span class="_ _4"></span>centers=4, <span class="_ _1"></span>n_features=3,random_state=123) <span class="_ _5"> </span>#3<span class="_ _3"> </span><span class="ff2">特征</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">print('y1=',y1)</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">print('y2=',y2)</div><div class="t m0 x1 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">y1= <span class="_ _4"></span>[0 <span class="_ _6"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>1 </div><div class="t m0 x1 h3 y1a ff3 fs0 fc0 sc0 ls0 ws0">1 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>3</div><div class="t m0 x1 h3 y1b ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 </div><div class="t m0 x1 h3 y1c ff3 fs0 fc0 sc0 ls0 ws0">0 <span class="_ _6"></span>3</div><div class="t m0 x1 h3 y1d ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0]</div><div class="t m0 x1 h3 y1e ff3 fs0 fc0 sc0 ls0 ws0">y2= <span class="_ _6"></span>[2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>3 </div><div class="t m0 x1 h3 y1f ff3 fs0 fc0 sc0 ls0 ws0">3 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>0</div><div class="t m0 x1 h3 y20 ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>3 </div><div class="t m0 x1 h3 y21 ff3 fs0 fc0 sc0 ls0 ws0">2 <span class="_ _6"></span>2</div><div class="t m0 x1 h3 y22 ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0]</div><div class="t m0 x1 h2 y23 ff1 fs0 fc0 sc0 ls0 ws0">2.</div><div class="t m0 x1 h2 y24 ff1 fs0 fc0 sc0 ls0 ws0">plt.figure(figsize=(18,12))</div><div class="t m0 x1 h2 y25 ff1 fs0 fc0 sc0 ls0 ws0">plt.subplot(121)</div><div class="t m0 x1 h2 y26 ff1 fs0 fc0 sc0 ls0 ws0">plt.scatter(X1[:,0],X1[:,1],s=50)</div><div class="t m0 x1 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">plt.xlabel("X1-1")</div><div class="t m0 x1 h2 y28 ff1 fs0 fc0 sc0 ls0 ws0">plt.ylabel("X1-2")</div><div class="t m0 x1 h2 y29 ff1 fs0 fc0 sc0 ls0 ws0">plt.title("%d<span class="_ _3"> </span><span class="ff2">个样本观测点的分布</span>"%N)</div><div class="t m0 x1 h2 y2a ff1 fs0 fc0 sc0 ls0 ws0">ax=plt.subplot(122, projection='3d')</div><div class="t m0 x1 h2 y2b ff1 fs0 fc0 sc0 ls0 ws0">ax.scatter(X2[:,0],X2[:,1],X2[:,2],c='blue')</div><div class="t m0 x1 h2 y2c ff1 fs0 fc0 sc0 ls0 ws0">ax.set_xlabel("X2-1")</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div><div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg2.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_ylabel("X2-2")</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_zlabel("X2-3")</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_title("%d<span class="_ _3"> </span><span class="ff2">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#20998;&#24067;</span>"%N)</div><div class="t m0 x1 h4 y2d ff3 fs0 fc0 sc0 ls0 ws0">Text(0.5, <span class="_ _6"></span>0.92, <span class="_ _4"></span>'100<span class="_ _3"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#20998;&#24067;</span>')</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">3.</div><div class="t m0 x1 h2 y2e ff1 fs0 fc0 sc0 ls0 ws0">KM= KMeans(n_clusters=4, max_iter = 500) <span class="_ _0"> </span># <span class="_ _3"> </span><span class="ff2">&#24314;&#31435;&#20108;&#29305;&#24449;&#25968;&#25454;</span> <span class="_ _7"> </span>KMeans<span class="_ _3"> </span><span class="ff2">&#27169;&#22411;</span></div><div class="t m0 x1 h2 y2f ff1 fs0 fc0 sc0 ls0 ws0">KM.fit(X1) <span class="_ _8"> </span>#<span class="ff2">&#35757;&#32451;</span></div><div class="t m0 x1 h2 y30 ff1 fs0 fc0 sc0 ls0 ws0">labels=np.unique(KM.labels_) <span class="_ _9"> </span>#<span class="ff2">&#39044;&#27979;</span></div><div class="t m0 x1 h2 y31 ff1 fs0 fc0 sc0 ls0 ws0">print('labels=',labels)</div><div class="t m0 x1 h2 y32 ff1 fs0 fc0 sc0 ls0 ws0">#<span class="ff2">&#39044;&#27979;&#32467;&#26524;&#21487;&#35270;&#21270;</span></div><div class="t m0 x1 h2 y33 ff1 fs0 fc0 sc0 ls0 ws0">markers='o*^+' </div><div class="t m0 x1 h2 y34 ff1 fs0 fc0 sc0 ls0 ws0">for i,label in enumerate(labels): <span class="_ _a"> </span>#<span class="ff2">&#20998;&#21035;&#32472;&#21046;&#27599;&#19968;&#20010;&#23567;&#31867;&#25968;&#25454;</span></div><div class="t m0 x1 h2 y35 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _5"> </span>plt.scatter(X1[KM.labels_==label,0],X1[KM.labels_==label,1],</div><div class="t m0 x1 h2 y36 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _b"> </span>label="cluster %d"%label,marker=markers[i],s=50)</div><div class="t m0 x1 h2 y37 ff1 fs0 fc0 sc0 ls0 ws0">plt.scatter(KM.cluster_centers_[:,0],KM.cluster_centers_[:,1],marker='X',</div><div class="t m0 x1 h2 y23 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _c"> </span>s=60,c='r',label="<span class="ff2">&#23567;&#31867;&#20013;&#24515;</span>") <span class="_ _d"> </span>#<span class="ff2">&#32472;&#21046;&#23567;&#31867;&#20013;&#24515;</span></div><div class="t m0 x1 h2 y24 ff1 fs0 fc0 sc0 ls0 ws0">plt.legend(loc="best",framealpha=0.5)</div><div class="t m0 x1 h2 y25 ff1 fs0 fc0 sc0 ls0 ws0">plt.xlabel("X1-1")</div><div class="t m0 x1 h2 y26 ff1 fs0 fc0 sc0 ls0 ws0">plt.ylabel("X1-2")</div><div class="t m0 x1 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">plt.title("%d<span class="_ _3"> </span><span class="ff2">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>"%N)</div><div class="t m0 x1 h5 y38 ff3 fs1 fc0 sc0 ls0 ws0">labels= <span class="_ _6"></span>[0 <span class="_ _6"></span>1 <span class="_ _6"></span>2 <span class="_ _6"></span>3]</div><div class="t m0 x2 h3 y39 ff3 fs0 fc1 sc0 ls0 ws0">Out[9]:</div><div class="t m0 x1 h6 y3a ff3 fs1 fc0 sc0 ls0 ws0">Text(0.5, <span class="_ _6"></span>1.0, <span class="_ _6"></span>'100<span class="_ _e"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>')</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div><div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg3.jpg"><div class="t m0 x1 h5 y3b ff3 fs1 fc0 sc0 ls0 ws0">4.</div><div class="t m0 x1 h6 y3c ff3 fs1 fc0 sc0 ls0 ws0">KM= <span class="_ _6"></span>KMeans(n_clusters=4, <span class="_ _6"></span>max_iter <span class="_ _6"></span>= <span class="_ _6"></span>500) <span class="_ _f"></span># <span class="_ _6"></span><span class="ff4">&#24314;&#31435;&#19977;&#29305;&#24449;&#25968;&#25454;<span class="ff3"> </span></span></div><div class="t m0 x1 h6 y3d ff3 fs1 fc0 sc0 ls0 ws0">KMeans<span class="_ _e"> </span><span class="ff4">&#27169;&#22411;</span></div><div class="t m0 x1 h6 y3e ff3 fs1 fc0 sc0 ls0 ws0">KM.fit(X2) <span class="_ _10"></span>#<span class="ff4">&#35757;&#32451;</span></div><div class="t m0 x1 h6 y3f ff3 fs1 fc0 sc0 ls0 ws0">labels=np.unique(KM.labels_) <span class="_ _11"></span>#<span class="ff4">&#39044;&#27979;</span></div><div class="t m0 x1 h6 y40 ff3 fs1 fc0 sc0 ls0 ws0">#(<span class="ff4">&#33719;&#24471;&#32858;&#31867;&#26631;&#31614;&#65292;&#32858;&#31867;&#35299;&#23384;&#20648;&#22312;<span class="_ _e"> </span></span>K-<span class="ff4">&#22343;&#20540;&#32858;&#31867;&#23545;&#35937;&#30340;</span>.labels_<span class="ff4">&#23646;&#24615;&#20013;</span>)</div><div class="t m0 x1 h6 y41 ff3 fs1 fc0 sc0 ls0 ws0">#<span class="ff4">&#39044;&#27979;&#32467;&#26524;&#21487;&#35270;&#21270;</span></div><div class="t m0 x1 h6 y42 ff3 fs1 fc0 sc0 ls0 ws0">#(<span class="ff4">&#21033;&#29992;<span class="_ _e"> </span></span>for<span class="_ _e"> </span><span class="ff4">&#24490;&#29615;&#21487;&#35270;&#21270;&#32858;&#31867;&#35299;&#65292;&#21363;&#20197;&#19981;&#21516;&#39068;&#33394;&#21644;&#24418;&#29366;&#30340;&#31526;&#21495;&#20998;&#21035;&#32472;&#21046;&#21508;&#23567;&#31867;&#30340;</span></div><div class="t m0 x1 h6 y43 ff4 fs1 fc0 sc0 ls0 ws0">&#25955;&#28857;&#22270;<span class="ff3">)</span></div><div class="t m0 x1 h5 y44 ff3 fs1 fc0 sc0 ls0 ws0">ax=plt.subplot(111, <span class="_ _6"></span>projection='3d')</div><div class="t m0 x1 h5 y45 ff3 fs1 fc0 sc0 ls0 ws0">markers='o*^+' </div><div class="t m0 x1 h6 y46 ff3 fs1 fc0 sc0 ls0 ws0">for <span class="_ _6"></span>i,label <span class="_ _6"></span>in <span class="_ _6"></span>enumerate(labels): <span class="_ _12"></span>#<span class="ff4">&#20998;&#21035;&#32472;&#21046;&#27599;&#19968;&#20010;&#23567;&#31867;</span></div><div class="t m0 x1 h6 y47 ff4 fs1 fc0 sc0 ls0 ws0">&#25968;&#25454;</div><div class="t m0 x1 h5 y48 ff3 fs1 fc0 sc0 ls0 ws0"> <span class="_ _f"></span>ax.scatter(X2[KM.labels_==label,0],X2[KM.labels_==labe</div><div class="t m0 x1 h5 y49 ff3 fs1 fc0 sc0 ls0 ws0">l,1],X2[KM.labels_==label,2],</div><div class="t m0 x1 h5 y4a ff3 fs1 fc0 sc0 ls0 ws0">label="cluster <span class="_ _6"></span>%d"%label,marker=markers[i],s=50)</div><div class="t m0 x1 h5 y4b ff3 fs1 fc0 sc0 ls0 ws0">ax.scatter(KM.cluster_centers_[:,0],KM.cluster_centers_[:</div><div class="t m0 x1 h5 y4c ff3 fs1 fc0 sc0 ls0 ws0">,1],KM.cluster_centers_[:,2], <span class="_ _6"></span>marker='X',s=60,c='r',label</div><div class="t m0 x1 h6 y4d ff3 fs1 fc0 sc0 ls0 ws0">="<span class="ff4">&#23567;&#31867;&#20013;&#24515;</span>") <span class="_ _6"></span>#<span class="ff4">&#32472;&#21046;&#23567;&#31867;&#20013;&#24515;</span></div><div class="t m0 x1 h6 y4e ff3 fs1 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>#<span class="ff4">&#23567;&#31867;&#30340;&#31867;&#36136;&#24515;&#22352;&#26631;&#23384;&#20648;&#22312;<span class="_ _e"> </span></span>K-<span class="ff4">&#22343;&#20540;&#23545;&#35937;&#30340;<span class="_ _e"> </span></span>cluster_centers_<span class="ff4">&#23646;&#24615;&#20013;</span></div><div class="t m0 x1 h5 y38 ff3 fs1 fc0 sc0 ls0 ws0">ax.legend(loc="best",framealpha=0.5)</div><div class="t m0 x1 h5 y4f ff3 fs1 fc0 sc0 ls0 ws0">ax.set_xlabel("X2-1")</div><div class="t m0 x1 h5 y50 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_ylabel("X2-2")</div><div class="t m0 x1 h5 y51 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_zlabel("X2-3")</div><div class="t m0 x1 h6 y52 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_title("%d<span class="_ _e"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>"%N)</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIPJAVA+Springboot框架小说电子书阅读系统 毕业设计开题报告(2025版)105.63KB10月前
    ZIPJAVA+Springboot框架小说电子书阅读系统 毕业设计开题答辩PPT350.82KB10月前
    ZIPopenssh-9.8p1-1.el7.x86-64.rpm16.37MB10月前
    ZIP2345看图王x64.zip15.21MB10月前
    ZIP机器学习 C++ 的opencv实现SVM图像二分类的训练 (二)所需数据集合10.36MB10月前
    ZIPggdtxzq_v29.6.3.0.zip38.93MB10月前
    ZIP超级plist图集拆图工具18.2MB10月前
    ZIP考试——素材1.zip138.06KB10月前