ZIPyolov5-7.0源码,附yolov5s分割模型权重 14.6MB

JH_joker

资源文件列表:

yolov5-7.0.zip 大约有168个文件
  1. yolov5-7.0/
  2. yolov5-7.0/.dockerignore 3.61KB
  3. yolov5-7.0/.gitattributes 75B
  4. yolov5-7.0/.github/
  5. yolov5-7.0/.github/CODE_OF_CONDUCT.md 5.11KB
  6. yolov5-7.0/.github/ISSUE_TEMPLATE/
  7. yolov5-7.0/.github/ISSUE_TEMPLATE/bug-report.yml 2.87KB
  8. yolov5-7.0/.github/ISSUE_TEMPLATE/config.yml 280B
  9. yolov5-7.0/.github/ISSUE_TEMPLATE/feature-request.yml 1.76KB
  10. yolov5-7.0/.github/ISSUE_TEMPLATE/question.yml 1.12KB
  11. yolov5-7.0/.github/PULL_REQUEST_TEMPLATE.md 693B
  12. yolov5-7.0/.github/README_cn.md 27.72KB
  13. yolov5-7.0/.github/SECURITY.md 359B
  14. yolov5-7.0/.github/dependabot.yml 441B
  15. yolov5-7.0/.github/workflows/
  16. yolov5-7.0/.github/workflows/ci-testing.yml 7.25KB
  17. yolov5-7.0/.github/workflows/codeql-analysis.yml 2KB
  18. yolov5-7.0/.github/workflows/docker.yml 1.54KB
  19. yolov5-7.0/.github/workflows/greetings.yml 4.75KB
  20. yolov5-7.0/.github/workflows/stale.yml 1.97KB
  21. yolov5-7.0/.gitignore 3.89KB
  22. yolov5-7.0/.pre-commit-config.yaml 1.52KB
  23. yolov5-7.0/CONTRIBUTING.md 4.88KB
  24. yolov5-7.0/LICENSE 34.3KB
  25. yolov5-7.0/README.md 36.46KB
  26. yolov5-7.0/benchmarks.py 7.65KB
  27. yolov5-7.0/classify/
  28. yolov5-7.0/classify/predict.py 11.22KB
  29. yolov5-7.0/classify/train.py 15.95KB
  30. yolov5-7.0/classify/tutorial.ipynb 100.49KB
  31. yolov5-7.0/classify/val.py 7.86KB
  32. yolov5-7.0/data/
  33. yolov5-7.0/data/Argoverse.yaml 2.67KB
  34. yolov5-7.0/data/GlobalWheat2020.yaml 1.84KB
  35. yolov5-7.0/data/ImageNet.yaml 18.43KB
  36. yolov5-7.0/data/Objects365.yaml 8.99KB
  37. yolov5-7.0/data/SKU-110K.yaml 2.29KB
  38. yolov5-7.0/data/VOC.yaml 3.41KB
  39. yolov5-7.0/data/VisDrone.yaml 2.9KB
  40. yolov5-7.0/data/coco.yaml 2.44KB
  41. yolov5-7.0/data/coco128-seg.yaml 1.82KB
  42. yolov5-7.0/data/coco128.yaml 1.81KB
  43. yolov5-7.0/data/hyps/
  44. yolov5-7.0/data/hyps/hyp.Objects365.yaml 673B
  45. yolov5-7.0/data/hyps/hyp.VOC.yaml 1.13KB
  46. yolov5-7.0/data/hyps/hyp.scratch-high.yaml 1.64KB
  47. yolov5-7.0/data/hyps/hyp.scratch-low.yaml 1.65KB
  48. yolov5-7.0/data/hyps/hyp.scratch-med.yaml 1.65KB
  49. yolov5-7.0/data/images/
  50. yolov5-7.0/data/images/bus.jpg 476.01KB
  51. yolov5-7.0/data/images/zidane.jpg 164.99KB
  52. yolov5-7.0/data/scripts/
  53. yolov5-7.0/data/scripts/download_weights.sh 640B
  54. yolov5-7.0/data/scripts/get_coco.sh 1.53KB
  55. yolov5-7.0/data/scripts/get_coco128.sh 618B
  56. yolov5-7.0/data/scripts/get_imagenet.sh 1.63KB
  57. yolov5-7.0/data/xView.yaml 5.05KB
  58. yolov5-7.0/detect.py 13.75KB
  59. yolov5-7.0/export.py 30.81KB
  60. yolov5-7.0/hubconf.py 7.53KB
  61. yolov5-7.0/models/
  62. yolov5-7.0/models/__init__.py
  63. yolov5-7.0/models/common.py 40.49KB
  64. yolov5-7.0/models/experimental.py 4.22KB
  65. yolov5-7.0/models/hub/
  66. yolov5-7.0/models/hub/anchors.yaml 3.26KB
  67. yolov5-7.0/models/hub/yolov3-spp.yaml 1.53KB
  68. yolov5-7.0/models/hub/yolov3-tiny.yaml 1.2KB
  69. yolov5-7.0/models/hub/yolov3.yaml 1.52KB
  70. yolov5-7.0/models/hub/yolov5-bifpn.yaml 1.39KB
  71. yolov5-7.0/models/hub/yolov5-fpn.yaml 1.19KB
  72. yolov5-7.0/models/hub/yolov5-p2.yaml 1.65KB
  73. yolov5-7.0/models/hub/yolov5-p34.yaml 1.32KB
  74. yolov5-7.0/models/hub/yolov5-p6.yaml 1.7KB
  75. yolov5-7.0/models/hub/yolov5-p7.yaml 2.07KB
  76. yolov5-7.0/models/hub/yolov5-panet.yaml 1.37KB
  77. yolov5-7.0/models/hub/yolov5l6.yaml 1.78KB
  78. yolov5-7.0/models/hub/yolov5m6.yaml 1.78KB
  79. yolov5-7.0/models/hub/yolov5n6.yaml 1.78KB
  80. yolov5-7.0/models/hub/yolov5s-LeakyReLU.yaml 1.46KB
  81. yolov5-7.0/models/hub/yolov5s-ghost.yaml 1.45KB
  82. yolov5-7.0/models/hub/yolov5s-transformer.yaml 1.41KB
  83. yolov5-7.0/models/hub/yolov5s6.yaml 1.78KB
  84. yolov5-7.0/models/hub/yolov5x6.yaml 1.78KB
  85. yolov5-7.0/models/segment/
  86. yolov5-7.0/models/segment/yolov5l-seg.yaml 1.38KB
  87. yolov5-7.0/models/segment/yolov5m-seg.yaml 1.38KB
  88. yolov5-7.0/models/segment/yolov5n-seg.yaml 1.38KB
  89. yolov5-7.0/models/segment/yolov5s-seg.yaml 1.38KB
  90. yolov5-7.0/models/segment/yolov5x-seg.yaml 1.38KB
  91. yolov5-7.0/models/tf.py 26.38KB
  92. yolov5-7.0/models/yolo.py 17.35KB
  93. yolov5-7.0/models/yolov5l.yaml 1.37KB
  94. yolov5-7.0/models/yolov5m.yaml 1.37KB
  95. yolov5-7.0/models/yolov5n.yaml 1.37KB
  96. yolov5-7.0/models/yolov5s.yaml 1.37KB
  97. yolov5-7.0/models/yolov5x.yaml 1.37KB
  98. yolov5-7.0/requirements.txt 1.5KB
  99. yolov5-7.0/segment/
  100. yolov5-7.0/segment/predict.py 14.66KB
  101. yolov5-7.0/segment/train.py 33.74KB
  102. yolov5-7.0/segment/tutorial.ipynb 41.88KB
  103. yolov5-7.0/segment/val.py 23.32KB
  104. yolov5-7.0/setup.cfg 1.65KB
  105. yolov5-7.0/train.py 32.74KB
  106. yolov5-7.0/tutorial.ipynb 52.58KB
  107. yolov5-7.0/utils/
  108. yolov5-7.0/utils/__init__.py 2.3KB
  109. yolov5-7.0/utils/activations.py 3.37KB
  110. yolov5-7.0/utils/augmentations.py 16.61KB
  111. yolov5-7.0/utils/autoanchor.py 7.25KB
  112. yolov5-7.0/utils/autobatch.py 2.92KB
  113. yolov5-7.0/utils/aws/
  114. yolov5-7.0/utils/aws/__init__.py
  115. yolov5-7.0/utils/aws/mime.sh 780B
  116. yolov5-7.0/utils/aws/resume.py 1.17KB
  117. yolov5-7.0/utils/aws/userdata.sh 1.22KB
  118. yolov5-7.0/utils/callbacks.py 2.6KB
  119. yolov5-7.0/utils/dataloaders.py 54.28KB
  120. yolov5-7.0/utils/docker/
  121. yolov5-7.0/utils/docker/Dockerfile 2.39KB
  122. yolov5-7.0/utils/docker/Dockerfile-arm64 1.64KB
  123. yolov5-7.0/utils/docker/Dockerfile-cpu 1.64KB
  124. yolov5-7.0/utils/downloads.py 4.54KB
  125. yolov5-7.0/utils/flask_rest_api/
  126. yolov5-7.0/utils/flask_rest_api/README.md 1.67KB
  127. yolov5-7.0/utils/flask_rest_api/example_request.py 368B
  128. yolov5-7.0/utils/flask_rest_api/restapi.py 1.41KB
  129. yolov5-7.0/utils/general.py 45.66KB
  130. yolov5-7.0/utils/google_app_engine/
  131. yolov5-7.0/utils/google_app_engine/Dockerfile 821B
  132. yolov5-7.0/utils/google_app_engine/additional_requirements.txt 105B
  133. yolov5-7.0/utils/google_app_engine/app.yaml 174B
  134. yolov5-7.0/utils/loggers/
  135. yolov5-7.0/utils/loggers/__init__.py 16.72KB
  136. yolov5-7.0/utils/loggers/clearml/
  137. yolov5-7.0/utils/loggers/clearml/README.md 10.6KB
  138. yolov5-7.0/utils/loggers/clearml/__init__.py
  139. yolov5-7.0/utils/loggers/clearml/clearml_utils.py 7.38KB
  140. yolov5-7.0/utils/loggers/clearml/hpo.py 5.15KB
  141. yolov5-7.0/utils/loggers/comet/
  142. yolov5-7.0/utils/loggers/comet/README.md 10.39KB
  143. yolov5-7.0/utils/loggers/comet/__init__.py 18.29KB
  144. yolov5-7.0/utils/loggers/comet/comet_utils.py 4.64KB
  145. yolov5-7.0/utils/loggers/comet/hpo.py 6.5KB
  146. yolov5-7.0/utils/loggers/comet/optimizer_config.json 2.95KB
  147. yolov5-7.0/utils/loggers/wandb/
  148. yolov5-7.0/utils/loggers/wandb/README.md 10.55KB
  149. yolov5-7.0/utils/loggers/wandb/__init__.py
  150. yolov5-7.0/utils/loggers/wandb/log_dataset.py 1.01KB
  151. yolov5-7.0/utils/loggers/wandb/sweep.py 1.18KB
  152. yolov5-7.0/utils/loggers/wandb/sweep.yaml 2.41KB
  153. yolov5-7.0/utils/loggers/wandb/wandb_utils.py 27.58KB
  154. yolov5-7.0/utils/loss.py 9.69KB
  155. yolov5-7.0/utils/metrics.py 14.29KB
  156. yolov5-7.0/utils/plots.py 24.69KB
  157. yolov5-7.0/utils/segment/
  158. yolov5-7.0/utils/segment/__init__.py
  159. yolov5-7.0/utils/segment/augmentations.py 3.67KB
  160. yolov5-7.0/utils/segment/dataloaders.py 13.47KB
  161. yolov5-7.0/utils/segment/general.py 4.82KB
  162. yolov5-7.0/utils/segment/loss.py 8.42KB
  163. yolov5-7.0/utils/segment/metrics.py 5.33KB
  164. yolov5-7.0/utils/segment/plots.py 6.24KB
  165. yolov5-7.0/utils/torch_utils.py 19.18KB
  166. yolov5-7.0/utils/triton.py 3.55KB
  167. yolov5-7.0/val.py 19.81KB
  168. yolov5s-seg.pt 14.87MB

资源介绍:

yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。
<div align="center"> <p> <a align="center" href="https://ultralytics.com/yolov5" target="_blank"> <img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a> </p> English | [简体中文](.github/README_cn.md) <br> <div> <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a> <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> <br> <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> </div> <br> <p> YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. <br><br> To request a commercial license please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>. <br><br> </p> <div align="center"> <a href="https://github.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a> </div> </div> ## <div align="center">Segmentation ⭐ NEW</div> <div align="center"> <a align="center" href="https://ultralytics.com/yolov5" target="_blank"> <img width="800" src="https://user-images.githubusercontent.com/26833433/203348073-9b85607b-03e2-48e1-a6ba-fe1c1c31749c.png"></a> </div> Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials. <details> <summary>Segmentation Checkpoints</summary> <br> We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility. | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) | |----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------| | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** | | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 | | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 | | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 | | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 | - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official - **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt` - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values ind
100+评论
captcha
    类型标题大小时间
    ZIPDjango框架练习之云笔记项目35KB8月前
    ZIPProcessing实验4之灯笼549.29KB8月前
    ZIP日本最大的网站z.zip1MB8月前
    ZIPqpdf-qpdf-qpdf27.18MB8月前
    ZIP强制关闭Chrome谷歌浏览器自动更新脚本1.64KB8月前
    ZIPProcessing实验2282.47KB8月前
    ZIPCHS视频恢复程序AVI版19.52MB8月前
    ZIPmxf高清视频恢复程序27.35MB8月前