资源摘要:yolo"YOLO" 是一种在计算机视觉领域广泛使用的目标检测算法,全称为 "You Only Look Once"。这种算法由 Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi 在 2015 年的论文 "You Only Look Once: Unified, Real-Time Object Detection" 中首次提出。YOLO 的主要特点是它能够将目标检测问题转化为一个单一的回归问题,从而显著提升了目标检测的速度和准确率。YOLO 的主要特点:速度快:YOLO 通过直接在图像上进行全局的回归预测,省去了传统目标检测方法中需要的区域建议(Region Proposal)和多次分类的步骤,因此大大加快了检测速度。全局信息:由于 YOLO 在预测时会考虑整个图像的信息,而不仅仅是某个区域,因此它能够更好地捕捉上下文信息,提高检测的准确性。实时性:YOLO 的速度非常快,特别是在使用较轻量级的网络结构时,可以达到实时检测的效果,非常适合需要快速响应的应用场景,如自动驾驶、视频监控等。YOLO 的工作原理: