资源摘要:灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题。仅适应于windows系统这段程序主要是一个使用灰狼算法优化支持向量机(SVM)参数的过程。下面我将逐步解释程序的功能、应用领域、工作内容、主要思路、解决的问题、涉及的知识点等。首先,程序开始时使用tic函数启动计时器,用于计算程序的运行时间。然后,通过close all、clear和clc函数清空环境变量,确保程序从一个干净的状态开始。接下来,程序读取两个Excel文件train.xlsx和test.xlsx,并将它们分别存储在train和test变量中。这两个文件包含了训练集和测试集的数据。其中,前n-1列是输入特征,最后一列是输出标签。然后,程序进行数据预处理。使用mapminmax函数将训练集和测试集的数据归一化到[0,1]区间。归一化后的数据存储在train_wine和test_wine变量中。接下来,程序利用灰狼算法选择最佳的SVM参数c和g。首先,定义了一些参数,如狼群数量、最大迭代次数、参数维度、参数取值上下界等。然后,初始化了Alpha