yolov5实现人群计数
资源文件列表:

yolov5/
yolov5/.dockerignore 3.61KB
yolov5/.git/
yolov5/.git/branches/
yolov5/.git/config 301B
yolov5/.git/description 73B
yolov5/.git/FETCH_HEAD
yolov5/.git/HEAD 23B
yolov5/.git/hooks/
yolov5/.git/hooks/applypatch-msg.sample 478B
yolov5/.git/hooks/commit-msg.sample 896B
yolov5/.git/hooks/fsmonitor-watchman.sample 4.55KB
yolov5/.git/hooks/post-update.sample 189B
yolov5/.git/hooks/pre-applypatch.sample 424B
yolov5/.git/hooks/pre-commit.sample 1.6KB
yolov5/.git/hooks/pre-merge-commit.sample 416B
yolov5/.git/hooks/pre-push.sample 1.34KB
yolov5/.git/hooks/pre-rebase.sample 4.78KB
yolov5/.git/hooks/pre-receive.sample 544B
yolov5/.git/hooks/prepare-commit-msg.sample 1.46KB
yolov5/.git/hooks/push-to-checkout.sample 2.72KB
yolov5/.git/hooks/update.sample 3.56KB
yolov5/.git/index 13.65KB
yolov5/.git/info/
yolov5/.git/info/exclude 240B
yolov5/.git/logs/
yolov5/.git/logs/HEAD 180B
yolov5/.git/logs/refs/
yolov5/.git/logs/refs/heads/
yolov5/.git/logs/refs/heads/master 180B
yolov5/.git/logs/refs/remotes/
yolov5/.git/logs/refs/remotes/origin/
yolov5/.git/logs/refs/remotes/origin/HEAD 180B
yolov5/.git/logs/refs/remotes/origin/master 146B
yolov5/.git/objects/
yolov5/.git/objects/24/
yolov5/.git/objects/24/ee28010fbf597ec796e6e471429cde21040f90 914B
yolov5/.git/objects/5b/
yolov5/.git/objects/5b/00f52a9c9b57a5c9488f364fdc722d84353712 1.02KB
yolov5/.git/objects/70/
yolov5/.git/objects/70/f86cf95cc04704b747a8e94941e70d5d09f954 546B
yolov5/.git/objects/71/
yolov5/.git/objects/71/81460581ece02ea70b2fe842d2ccf4173eb278 291B
yolov5/.git/objects/78/
yolov5/.git/objects/78/3d877b23a75d2d39dbd639f51a43fe12167363 133B
yolov5/.git/objects/8e/
yolov5/.git/objects/8e/f7f74c9d8b48e6a74c5cb4ce0a6af8a7e8b6d0 11.38KB
yolov5/.git/objects/93/
yolov5/.git/objects/93/33f862dd72920841e90ec0e26f9d0b18d6abfd 151B
yolov5/.git/objects/9f/
yolov5/.git/objects/9f/2f78e636ddbd7944da3ca6db66e8f20ea5f105 2.19KB
yolov5/.git/objects/b3/
yolov5/.git/objects/b3/83deb7e917fef801adcb31756a57382f8d743a 12.33KB
yolov5/.git/objects/bb/
yolov5/.git/objects/bb/5c1f99689e96abce764894c0182093d130fa71 12.46KB
yolov5/.git/objects/c5/
yolov5/.git/objects/c5/47a29a9c9c20ea82fd4a0823d741f7bf1d0fcc 22.84KB
yolov5/.git/objects/cf/
yolov5/.git/objects/cf/3d27b8731362f97e11741768b576845840a355 1.02KB
yolov5/.git/objects/d3/
yolov5/.git/objects/d3/9f824a4f2fdbede6ecb1ee4dde0345262debbf 10.65KB
yolov5/.git/objects/e2/
yolov5/.git/objects/e2/21fbc32a11cbb33a13b4984b1cee6a3d2be79a 150B
yolov5/.git/objects/fd/
yolov5/.git/objects/fd/5b7bad101f26c101b7118fc5281c087574da2b 779B
yolov5/.git/objects/info/
yolov5/.git/objects/pack/
yolov5/.git/objects/pack/pack-3362ae32d143657d388225798105f5f0a60d9ada.idx 465.97KB
yolov5/.git/objects/pack/pack-3362ae32d143657d388225798105f5f0a60d9ada.pack 15.73MB
yolov5/.git/packed-refs 1.23KB
yolov5/.git/refs/
yolov5/.git/refs/heads/
yolov5/.git/refs/heads/master 41B
yolov5/.git/refs/remotes/
yolov5/.git/refs/remotes/origin/
yolov5/.git/refs/remotes/origin/HEAD 32B
yolov5/.git/refs/remotes/origin/master 41B
yolov5/.git/refs/tags/
yolov5/.gitattributes 75B
yolov5/.github/
yolov5/.github/dependabot.yml 649B
yolov5/.github/ISSUE_TEMPLATE/
yolov5/.github/ISSUE_TEMPLATE/bug-report.yml 2.9KB
yolov5/.github/ISSUE_TEMPLATE/config.yml 405B
yolov5/.github/ISSUE_TEMPLATE/feature-request.yml 1.79KB
yolov5/.github/ISSUE_TEMPLATE/question.yml 1.17KB
yolov5/.github/workflows/
yolov5/.github/workflows/ci-testing.yml 6.8KB
yolov5/.github/workflows/cla.yml 1.57KB
yolov5/.github/workflows/codeql-analysis.yml 1.17KB
yolov5/.github/workflows/docker.yml 1.66KB
yolov5/.github/workflows/format.yml 5.34KB
yolov5/.github/workflows/links.yml 2.74KB
yolov5/.github/workflows/merge-main-into-prs.yml 3.02KB
yolov5/.github/workflows/stale.yml 2.31KB
yolov5/.gitignore 3.92KB
yolov5/benchmarks.py 13.79KB
yolov5/CITATION.cff 393B
yolov5/classify/
yolov5/classify/predict.py 11.81KB
yolov5/classify/train.py 16.1KB
yolov5/classify/tutorial.ipynb 93.67KB
yolov5/classify/val.py 8.01KB
yolov5/CONTRIBUTING.md 4.89KB
yolov5/data/
yolov5/data/Argoverse.yaml 2.66KB
yolov5/data/coco.yaml 2.43KB
yolov5/data/coco128-seg.yaml 1.85KB
yolov5/data/coco128.yaml 1.83KB
yolov5/data/GlobalWheat2020.yaml 1.84KB
yolov5/data/hyps/
yolov5/data/hyps/hyp.no-augmentation.yaml 1.61KB
yolov5/data/hyps/hyp.Objects365.yaml 671B
yolov5/data/hyps/hyp.scratch-high.yaml 1.61KB
yolov5/data/hyps/hyp.scratch-low.yaml 1.62KB
yolov5/data/hyps/hyp.scratch-med.yaml 1.62KB
yolov5/data/hyps/hyp.VOC.yaml 1.13KB
yolov5/data/ImageNet.yaml 18.42KB
yolov5/data/ImageNet10.yaml 929B
yolov5/data/ImageNet100.yaml 2.58KB
yolov5/data/ImageNet1000.yaml 18.42KB
yolov5/data/images/
yolov5/data/images/bus.jpg 476.01KB
yolov5/data/images/zidane.jpg 164.99KB
yolov5/data/Objects365.yaml 8.98KB
yolov5/data/scripts/
yolov5/data/scripts/download_weights.sh 641B
yolov5/data/scripts/get_coco.sh 1.53KB
yolov5/data/scripts/get_coco128.sh 619B
yolov5/data/scripts/get_imagenet.sh 1.63KB
yolov5/data/scripts/get_imagenet10.sh 734B
yolov5/data/scripts/get_imagenet100.sh 738B
yolov5/data/scripts/get_imagenet1000.sh 742B
yolov5/data/SKU-110K.yaml 2.28KB
yolov5/data/VisDrone.yaml 2.9KB
yolov5/data/VOC.yaml 3.41KB
yolov5/data/xView.yaml 5.04KB
yolov5/export.py 66.14KB
yolov5/hubconf.py 23.41KB
yolov5/LICENSE 33.71KB
yolov5/models/
yolov5/models/common.py 50.89KB
yolov5/models/experimental.py 5.03KB
yolov5/models/hub/
yolov5/models/hub/anchors.yaml 3.26KB
yolov5/models/hub/yolov3-spp.yaml 1.55KB
yolov5/models/hub/yolov3-tiny.yaml 1.22KB
yolov5/models/hub/yolov3.yaml 1.54KB
yolov5/models/hub/yolov5-bifpn.yaml 1.41KB
yolov5/models/hub/yolov5-fpn.yaml 1.2KB
yolov5/models/hub/yolov5-p2.yaml 1.66KB
yolov5/models/hub/yolov5-p34.yaml 1.21KB
yolov5/models/hub/yolov5-p6.yaml 1.71KB
yolov5/models/hub/yolov5-p7.yaml 2.09KB
yolov5/models/hub/yolov5-panet.yaml 1.39KB
yolov5/models/hub/yolov5l6.yaml 1.79KB
yolov5/models/hub/yolov5m6.yaml 1.79KB
yolov5/models/hub/yolov5n6.yaml 1.79KB
yolov5/models/hub/yolov5s-ghost.yaml 1.46KB
yolov5/models/hub/yolov5s-LeakyReLU.yaml 1.48KB
yolov5/models/hub/yolov5s-transformer.yaml 1.42KB
yolov5/models/hub/yolov5s6.yaml 1.79KB
yolov5/models/hub/yolov5x6.yaml 1.79KB
yolov5/models/segment/
yolov5/models/segment/yolov5l-seg.yaml 1.39KB
yolov5/models/segment/yolov5m-seg.yaml 1.4KB
yolov5/models/segment/yolov5n-seg.yaml 1.4KB
yolov5/models/segment/yolov5s-seg.yaml 1.4KB
yolov5/models/segment/yolov5x-seg.yaml 1.4KB
yolov5/models/tf.py 32.97KB
yolov5/models/yolo.py 20.54KB
yolov5/models/yolov5l.yaml 1.38KB
yolov5/models/yolov5m.yaml 1.39KB
yolov5/models/yolov5n.yaml 1.39KB
yolov5/models/yolov5s.yaml 1.39KB
yolov5/models/yolov5x.yaml 1.39KB
yolov5/models/__init__.py
yolov5/models/__pycache__/
yolov5/models/__pycache__/common.cpython-38.pyc 48.04KB
yolov5/models/__pycache__/experimental.cpython-38.pyc 5.83KB
yolov5/models/__pycache__/yolo.cpython-38.pyc 19.27KB
yolov5/models/__pycache__/__init__.cpython-38.pyc 164B
yolov5/person_count.py 23.52KB
yolov5/pyproject.toml 5.25KB
yolov5/README.md 42.15KB
yolov5/README.zh-CN.md 42.25KB
yolov5/requirements.txt 1.56KB
yolov5/runs/
yolov5/segment/
yolov5/segment/predict.py 15.91KB
yolov5/segment/train.py 34.35KB
yolov5/segment/tutorial.ipynb 40.08KB
yolov5/segment/val.py 23.8KB
yolov5/test.jpg 427.76KB
yolov5/train.py 46.03KB
yolov5/tutorial.ipynb 40.45KB
yolov5/utils/
yolov5/utils/activations.py 4.89KB
yolov5/utils/augmentations.py 18.51KB
yolov5/utils/autoanchor.py 7.75KB
yolov5/utils/autobatch.py 2.97KB
yolov5/utils/aws/
yolov5/utils/aws/mime.sh 780B
yolov5/utils/aws/resume.py 1.21KB
yolov5/utils/aws/userdata.sh 1.22KB
yolov5/utils/aws/__init__.py
yolov5/utils/callbacks.py 2.65KB
yolov5/utils/dataloaders.py 59.07KB
yolov5/utils/docker/
yolov5/utils/docker/Dockerfile 2.5KB
yolov5/utils/docker/Dockerfile-arm64 1.53KB
yolov5/utils/docker/Dockerfile-cpu 1.78KB
yolov5/utils/downloads.py 5.11KB
yolov5/utils/flask_rest_api/
yolov5/utils/flask_rest_api/example_request.py 365B
yolov5/utils/flask_rest_api/README.md 1.68KB
yolov5/utils/flask_rest_api/restapi.py 1.54KB
yolov5/utils/general.py 50.24KB
yolov5/utils/google_app_engine/
yolov5/utils/google_app_engine/additional_requirements.txt 264B
yolov5/utils/google_app_engine/app.yaml 219B
yolov5/utils/google_app_engine/Dockerfile 821B
yolov5/utils/loggers/
yolov5/utils/loggers/clearml/
yolov5/utils/loggers/clearml/clearml_utils.py 9.47KB
yolov5/utils/loggers/clearml/hpo.py 5.17KB
yolov5/utils/loggers/clearml/README.md 10.58KB
yolov5/utils/loggers/clearml/__init__.py
yolov5/utils/loggers/comet/
yolov5/utils/loggers/comet/comet_utils.py 4.71KB
yolov5/utils/loggers/comet/hpo.py 6.77KB
yolov5/utils/loggers/comet/optimizer_config.json 2.37KB
yolov5/utils/loggers/comet/README.md 10.56KB
yolov5/utils/loggers/comet/__init__.py 21.09KB
yolov5/utils/loggers/wandb/
yolov5/utils/loggers/wandb/wandb_utils.py 7.95KB
yolov5/utils/loggers/wandb/__init__.py
yolov5/utils/loggers/__init__.py 19.78KB
yolov5/utils/loss.py 11.11KB
yolov5/utils/metrics.py 15.13KB
yolov5/utils/plots.py 20.21KB
yolov5/utils/segment/
yolov5/utils/segment/augmentations.py 3.68KB
yolov5/utils/segment/dataloaders.py 13.38KB
yolov5/utils/segment/general.py 5.8KB
yolov5/utils/segment/loss.py 9KB
yolov5/utils/segment/metrics.py 5.88KB
yolov5/utils/segment/plots.py 6.53KB
yolov5/utils/segment/__init__.py
yolov5/utils/torch_utils.py 21.15KB
yolov5/utils/triton.py 3.7KB
yolov5/utils/__init__.py 3.17KB
yolov5/utils/__pycache__/
yolov5/utils/__pycache__/augmentations.cpython-38.pyc 16.5KB
yolov5/utils/__pycache__/autoanchor.cpython-38.pyc 6.82KB
yolov5/utils/__pycache__/dataloaders.cpython-38.pyc 49.1KB
yolov5/utils/__pycache__/downloads.cpython-38.pyc 4.76KB
yolov5/utils/__pycache__/general.cpython-38.pyc 45.55KB
yolov5/utils/__pycache__/metrics.cpython-38.pyc 12.28KB
yolov5/utils/__pycache__/plots.cpython-38.pyc 19.54KB
yolov5/utils/__pycache__/torch_utils.cpython-38.pyc 19.65KB
yolov5/utils/__pycache__/__init__.cpython-38.pyc 3.61KB
yolov5/val.py 29.71KB
yolov5/yolov5s.pt 14.12MB
yolov5/__pycache__/
yolov5/__pycache__/export.cpython-38.pyc 56.73KB
资源介绍:
本项目是一个使用 YOLOv5 模型实现的人群计数 Python 应用。YOLOv5 是一个流行的目标检测模型,以其速度快和准确性高而闻名。通过这个项目,你可以快速部署一个能够识别图像中人数的系统。 功能特点: 高精度人群计数:利用 YOLOv5 模型的高效目标检测能力,实现对人群的精确计数。 实时图像处理:支持从摄像头或视频文件中实时读取图像,并进行人群计数。 易于集成:代码结构清晰,易于与其他系统或应用集成。 跨平台支持:兼容主流操作系统,包括 Windows、Linux 和 macOS。 技术栈: Python:编程语言。 YOLOv5:目标检测模型。 OpenCV:用于图像处理和显示。
[涓枃](https://docs.ultralytics.com/zh) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Fran莽ais](https://docs.ultralytics.com/fr) | [Espa帽ol](https://docs.ultralytics.com/es) | [Portugu锚s](https://docs.ultralytics.com/pt) | [T眉rk莽e](https://docs.ultralytics.com/tr) | [Ti岷縩g Vi峄噒](https://docs.ultralytics.com/vi) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar)
YOLOv5 馃殌 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 Docs for details, raise an issue on GitHub for support, and join our Discord community for questions and discussions! To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
YOLOv5 馃殌 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 Docs for details, raise an issue on GitHub for support, and join our Discord community for questions and discussions! To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
##
YOLOv8 馃殌 NEW
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:
[](https://badge.fury.io/py/ultralytics) [](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
## Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing and deployment. See below for quickstart examples.