首页下载资源前端wish20241105

ZIPwish20241105

yyfhq5.53MB需要积分:1

资源文件列表:

Point-PN-main.zip 大约有49个文件
  1. datasets/
  2. datasets/data_mn40.py 3.66KB
  3. datasets/data_pn_mn40.py 3.34KB
  4. datasets/data_pn_scan.py 7.64KB
  5. datasets/data_scan.py 2.07KB
  6. datasets/data_seg.py 4.29KB
  7. LICENSE 1.04KB
  8. logger.py 1.79KB
  9. models/
  10. models/__init__.py 162B
  11. models/model_utils.py 1.74KB
  12. models/point_nn.py 5.91KB
  13. models/point_nn_seg.py 8.07KB
  14. models/point_pn.py 8.83KB
  15. pipeline.png 725.46KB
  16. Point-NN_arxiv.pdf 5.25MB
  17. pointnet2_ops_lib/
  18. pointnet2_ops_lib/MANIFEST.in 29B
  19. pointnet2_ops_lib/pointnet2_ops/
  20. pointnet2_ops_lib/pointnet2_ops/__init__.py 123B
  21. pointnet2_ops_lib/pointnet2_ops/_ext-src/
  22. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/
  23. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/ball_query.h 163B
  24. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/cuda_utils.h 1.27KB
  25. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/group_points.h 183B
  26. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/interpolate.h 386B
  27. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/sampling.h 260B
  28. pointnet2_ops_lib/pointnet2_ops/_ext-src/include/utils.h 983B
  29. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/
  30. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/ball_query.cpp 1.01KB
  31. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/ball_query_gpu.cu 1.74KB
  32. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/bindings.cpp 570B
  33. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/group_points.cpp 1.91KB
  34. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/group_points_gpu.cu 2.82KB
  35. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/interpolate.cpp 3.23KB
  36. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/interpolate_gpu.cu 5.02KB
  37. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling.cpp 2.83KB
  38. pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling_gpu.cu 6.85KB
  39. pointnet2_ops_lib/pointnet2_ops/_version.py 22B
  40. pointnet2_ops_lib/pointnet2_ops/pointnet2_modules.py 6.38KB
  41. pointnet2_ops_lib/pointnet2_ops/pointnet2_utils.py 10.15KB
  42. pointnet2_ops_lib/setup.py 1.16KB
  43. README.md 4.82KB
  44. requirements.txt 193B
  45. run_nn_cls.py 4.31KB
  46. run_nn_seg.py 5.4KB
  47. run_pn_mn40.py 10.11KB
  48. run_pn_scan.py 11.14KB
  49. utils.py 12.66KB

资源介绍:

wish20241105
# Parameter is Not All You Need Official implementation of ['Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis'](https://arxiv.org/pdf/2303.08134.pdf). The paper has been accepted by **CVPR 2023** 🔥. [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/parameter-is-not-all-you-need-starting-from/training-free-3d-point-cloud-classification)](https://paperswithcode.com/sota/training-free-3d-point-cloud-classification?p=parameter-is-not-all-you-need-starting-from) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/parameter-is-not-all-you-need-starting-from/training-free-3d-point-cloud-classification-1)](https://paperswithcode.com/sota/training-free-3d-point-cloud-classification-1?p=parameter-is-not-all-you-need-starting-from) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/parameter-is-not-all-you-need-starting-from/training-free-3d-part-segmentation-on)](https://paperswithcode.com/sota/training-free-3d-part-segmentation-on?p=parameter-is-not-all-you-need-starting-from) ## News * **Seg-NN** has been accepted as ***CVPR 2024 Highlight Paper*** 🔥! * We release [Seg-NN](https://arxiv.org/pdf/2404.04050.pdf) and [code](https://github.com/yangyangyang127/Seg-NN), which adapts Point-NN & Point-PN into 3D scene segmentation tasks 🔥. * For the first time, we conduct 3D analysis entirely requiring $\color{darkorange}{No\ Parameter\ or\ Training\.}$ 💥 * The code of Point-PN has been released 📌. * The code of Point-NN for shape classification and part segmentation has been released. ## Introduction We present a **N**on-parametric **N**etwork for 3D point cloud analysis, **Point-NN**, which consists of purely non-learnable components. Surprisingly, requiring no parameters or training, it performs well on various 3D tasks, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct **P**arametric **N**etworks, **Point-PN**, which exhibits superior performance with simple linear layers. Second, Point-NN can be regarded as a plug-and-play module to enhance the already trained 3D models during inference by complementary knowledge.
## Requirements ### Installation Create a conda environment and install dependencies: ```bash git clone https://github.com/ZrrSkywalker/Point-NN.git cd Point-NN conda create -n pointnn python=3.7 conda activate pointnn # Install the according versions of torch and torchvision conda install pytorch torchvision cudatoolkit pip install -r requirements.txt pip install pointnet2_ops_lib/. ``` ### Dataset Please download the following datasets: [ModelNet40](https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip), [ScanObjectNN](https://hkust-vgd.ust.hk/scanobjectnn/h5_files.zip), and [ShapeNetPart](https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip). Then, create a `data/` folder and organize the datasets as ``` data/ |–– h5_files/ |–– modelnet40_ply_hdf5_2048/ |–– shapenetcore_partanno_segmentation_benchmark_v0_normal/ ``` ## Point-NN --- Very Quick Implementation 🚀 ### Shape Classification Due to the training-free manner, the preparation and inference of Point-NN only take **2 minutes**. For ModelNet40 dataset, just run: ```bash python run_nn_cls.py --dataset mn40 ``` For ScanObjectNN dataset, just run: ```bash python run_nn_cls.py --dataset scan --split 1 ``` Please indicate the splits at `--split` by `1,2,3` for OBJ-BG, OBJ-ONLY, and PB-T50-RS, respectively. ### Part Segmentation For ShapeNetPart, Point-NN takes **7 minutes** to achieve 71.5% mIOU (70.4% in the paper), just run: ```bash python run_nn_seg.py ``` You can increase the point number `--points` and k-NN neighbors `--k` into `2048` and `128`, which further acheives **74%** with 18 minutes. ## Point-PN ### Shape Classification Point-PN is the parametric version of Point-NN with efficient parameters and simple 3D operators. For ModelNet40 dataset, just run: ```bash python run_pn_mn40.py --msg ``` For ScanObjectNN dataset, just run: ```bash python run_pn_scan.py --split 1 --msg ``` Please indicate the splits at `--split` by `1,2,3` for OBJ-BG, OBJ-ONLY, and PB-T50-RS, respectively. ## Citation ```bash @article{zhang2023parameter, title={Parameter is not all you need: Starting from non-parametric networks for 3d point cloud analysis}, author={Zhang, Renrui and Wang, Liuhui and Wang, Yali and Gao, Peng and Li, Hongsheng and Shi, Jianbo}, journal={arXiv preprint arXiv:2303.08134}, year={2023} } ``` ## Contact If you have any question about this project, please feel free to contact zhangrenrui@pjlab.org.cn.
100+评论
captcha