ZIP基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动 233.15KB

AucIbENR需要积分:8(1积分=1元)

资源文件列表:

基于的滑模观测器.zip 大约有11个文件
  1. 1.jpg 79.84KB
  2. 2.jpg 92.63KB
  3. 3.jpg 113.45KB
  4. 基于的滑模观测器算法在无传感器矢.doc 2.29KB
  5. 基于的滑模观测器算法在永磁同步.txt 2.06KB
  6. 基于的滑模观测器算法在永磁同步电机无.txt 1.87KB
  7. 基于的滑模观测器算法在永磁同步电机无传感器矢量.txt 2.06KB
  8. 基于的滑模观测器算法是一种用于永磁同步电.txt 1.29KB
  9. 基于的滑模观测器算法永磁同步电机.txt 2.44KB
  10. 基于的滑模观测器算法永磁同步电机无传感器矢.html 4.5KB
  11. 基于的滑模观测器算法永磁同步电机无传感器矢量控制.txt 154B

资源介绍:

基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动。
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90182747/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90182747/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法在无传感器矢量控制中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">引言<span class="ff3">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着信息技术的快速进步<span class="ff3">,</span>无传感器矢量控制成为了现代电机控制领域的一项重要技术<span class="ff4">。</span>在无传感器</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">矢量控制中<span class="ff3">,</span>精确估计电机转速对于实现准确控制至关重要<span class="ff4">。</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">传统的无传感器矢量控制方法中使用的滑模观测器<span class="ff3">(<span class="ff2">Sliding Mode Observer</span>,<span class="ff2">SMO</span>)</span>算法能够有</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">效地估计电机转速<span class="ff3">,</span>但在实际应用中存在转速抖动的问题<span class="ff4">。</span>为了解决这个问题<span class="ff3">,</span>本文提出了一种基于</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">相位锁定环路<span class="ff3">(<span class="ff2">Phase-Locked Loop</span>,<span class="ff2">PLL</span>)</span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法<span class="ff3">,</span>该算法能够显著降低转速抖</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">动<span class="ff3">,</span>提高系统控制性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、<span class="ff2">SMO<span class="_ _1"> </span></span></span>滑模观测器算法原理</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">滑模观测器是一种基于滑模理论的估计算法<span class="ff3">,</span>在无传感器矢量控制中被广泛应用<span class="ff4">。</span>其原理是通过引入</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">滑模面<span class="ff3">,</span>在滑模面上实时观测电机状态并估计转速<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>的估计算法可用于无传感器矢量控制中<span class="ff3">,</span>但在实际应用中<span class="ff3">,</span>由于环境噪声和参数摄动的存在</div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">传统的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>算法存在转速抖动的问题<span class="ff4">。</span>为了解决这个问题</span>,<span class="ff1">本文提出了一种基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">观测器算法<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法设计</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>PLL<span class="_ _1"> </span><span class="ff1">原理</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">PLL<span class="_ _1"> </span><span class="ff1">是一种常用的控制系统技术<span class="ff3">,</span>在通信和电力电子等领域有广泛应用<span class="ff4">。</span>其主要原理是通过将参考信</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">号与系统输出信号进行比较<span class="ff3">,</span>调整控制参数来实现精确的锁相跟踪<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">在基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法中<span class="ff3">,</span>我们利用<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的相位锁定环路来对电机转速进行估计<span class="ff4">。</span>通过</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">将锁相环路的参考信号与滑模观测器输出的估计值进行比较<span class="ff3">,</span>我们可以实时调整<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的参数<span class="ff3">,</span>使得估</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">计值与实际值更加接近<span class="ff3">,</span>从而减小转速抖动<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>SMO<span class="_ _1"> </span><span class="ff1">滑模观测器算法设计</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法主要包括以下几个步骤<span class="ff3">:</span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">(<span class="ff2">1</span>)<span class="ff1">滑模面设计</span>:<span class="ff1">根据电机的动态特性和系统要求</span>,<span class="ff1">设计适当的滑模面</span>,<span class="ff1">以实现对电机状态的观测</span></div><div class="t m0 x1 h3 y19 ff4 fs0 fc0 sc0 ls0 ws0">。</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIPMATLAB计算声发射b值(或熵值,或活动度S值,变异系数CV值,均值与方差,以及自相关系数Acf,六选一)p文件资料包(计算间隔和滑动窗口可调)888.84KB4月前
    ZIP基于三菱PLC和组态王恒温控制系统的设计加热炉温度控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面616.43KB4月前
    ZIP利用BP神经网络来预测不同工况下的轮胎侧向力,从carsim中获得数据,利用BP神经网络训练得到轮胎侧向力估计模型 主要内容如下:1、在线计算k值,可便于后续和别的控制器联合,2、利用BP神经网393.76KB4月前
    ZIPS7-200 组态王 组态王单容液位控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面9.6KB4月前
    ZIP17325458887980.zip3.75KB4月前
    ZIP基于MATLAB的数字滤波器设计及其语音信号去噪应用 (供学习交流) 其中数字滤波器包括IIR和FIR的低通、高通、带通、带阻四大类型及其多种设计方法 GUI界面中有语音信号输入模块,滤波262.87KB4月前
    ZIPcomsol流体仿真 ,流固耦合,圆管内流体驱动物块的移动和流体驱动扇叶的转动38.07KB4月前
    ZIPSOME IP协议规范文档1.71MB4月前