ZIP文献复现基于分布式模型预测控制的多智能体点对点转移的轨迹生成摘要-本文介绍了一种基于分布式模型预测控制(DMPC)的多智能体离线轨迹生成的新算法 该算法的可伸缩性和成功的关键在于开发了按需碰撞避 678.53KB

rsKsWlWJCz需要积分:1(1积分=1元)

资源文件列表:

文献复现基于分布式模型预测控制的多智能体点对点.zip 大约有16个文件
  1. 1.jpg 222.49KB
  2. 2.jpg 166.87KB
  3. 3.jpg 56.05KB
  4. 4.jpg 96.18KB
  5. 5.jpg 49.68KB
  6. 6.jpg 42.22KB
  7. 7.jpg 38.69KB
  8. 8.jpg 52.55KB
  9. 基于分布式模型预测控制的多智能.txt 2.31KB
  10. 基于分布式模型预测控制的多智能体点对点.txt 2.58KB
  11. 基于分布式模型预测控制的多智能体点对点转移.doc 2.03KB
  12. 技术博客文章基于分布式模型预测.txt 2.35KB
  13. 文献复现基于分布式模型预测控制的多智能.html 6.51KB
  14. 文献复现基于分布式模型预测控制的多智能.txt 577B
  15. 文献复现基于分布式模型预测控制的多智能体.txt 2.69KB
  16. 深入探讨文献复现中基于分布式模型.txt 2.17KB

资源介绍:

文献复现 基于分布式模型预测控制的多智能体点对点转移的轨迹生成 摘要—本文介绍了一种基于分布式模型预测控制(DMPC)的多智能体离线轨迹生成的新算法。 该算法的可伸缩性和成功的关键在于开发了按需碰撞避免策略。 通过预测未来状态并与邻居分享这些信息,智能体能够在朝向目标的过程中检测并避免碰撞。 所提出的算法可以以分布式方式实现,并且与基于顺序凸规划(SCP)的先前优化方法相比,计算时间缩短了超过85%,同时对计划的最优性影响很小。 该方法经过了广泛的仿真验证,并通过在室内受限空间中飞行的多达25架四轴飞行器进行了实验验证。 附带参考文献
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213253/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213253/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">### <span class="ff2">基于分布式模型预测控制的多智能体点对点转移轨迹生成</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="ff2">一<span class="ff3">、</span>背景介绍</span></div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在众多工业领域中<span class="ff4">,</span>自动化与智能化的应用无处不在<span class="ff4">,</span>尤其是在高精度轨迹生成与优化领域<span class="ff3">。</span>特别是</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">在面临诸如复杂的机械系统控制<span class="ff3">、</span>交通系统优化<span class="ff3">、</span>智能家居管理等应用场景时<span class="ff4">,</span>模型预测控制<span class="ff4">(<span class="ff1">MPC</span></span></div><div class="t m0 x1 h2 y5 ff4 fs0 fc0 sc0 ls0 ws0">)<span class="ff2">技术显得尤为重要<span class="ff3">。</span>本博客将围绕一种基于分布式模型预测控制的多智能体点对点转移轨迹生成方</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">法展开深入分析<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="ff2">二<span class="ff3">、</span>技术概述</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">该技术基于分布式模型预测控制<span class="ff4">,</span>特别适用于复杂环境下的轨迹生成与优化<span class="ff3">。</span>该方法利用先进的预测</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">技术<span class="ff4">,</span>确保智能体在复杂环境中的移动路径更加平滑<span class="ff3">、</span>高效<span class="ff3">。</span>该算法不仅具有高度的可伸缩性<span class="ff4">,</span>而且</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">在处理碰撞避免问题上展现出显著的优势<span class="ff3">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="ff2">三<span class="ff3">、</span>关键技术与算法分析</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">**1. <span class="ff2">碰撞避免策略的开发</span>**</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">为了实现高效的轨迹生成<span class="ff4">,</span>该算法开发了一种按需碰撞避免策略<span class="ff3">。</span>通过预测未来状态并与邻居智能体</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">分享这些信息<span class="ff4">,</span>智能体能够在朝向目标的过程中实时检测并避免碰撞<span class="ff3">。</span>这种策略使得轨迹生成更加灵</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">活和高效<span class="ff3">。</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">**2. <span class="ff2">分布式模型预测控制实现</span>**</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">该算法采用了分布式模型预测控制的方法<span class="ff4">,</span>能够在多个智能体之间共享预测结果<span class="ff4">,</span>从而实现高效的轨</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">迹生成<span class="ff3">。</span>这种方法的优点在于可以充分利用计算资源<span class="ff4">,</span>提高轨迹生成的效率和准确性<span class="ff3">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">**3. <span class="ff2">与传统方法的比较</span>**</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">与传统的顺序凸规划方法相比<span class="ff4">,</span>该算法的计算时间缩短了超过<span class="_ _0"> </span><span class="ff1">85%<span class="ff4">,</span></span>大大提高了轨迹生成的效率<span class="ff3">。</span>同</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">时<span class="ff4">,</span>由于采用了分布式处理的方式<span class="ff4">,</span>该算法对计划的最优性影响较小<span class="ff4">,</span>使得生成的轨迹更加符合实际</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">需求<span class="ff3">。</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="ff2">四<span class="ff3">、</span>仿真验证与实验验证</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">为了验证该算法的可行性和有效性<span class="ff4">,</span>进行了广泛的仿真验证和实验验证<span class="ff3">。</span>在仿真验证中<span class="ff4">,</span>通过模拟多</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">达<span class="_ _0"> </span><span class="ff1">25<span class="_ _1"> </span></span>架四轴飞行器的移动轨迹生成过程<span class="ff4">,</span>验证了算法的准确性和高效性<span class="ff3">。</span>在实验验证中<span class="ff4">,</span>通过在室</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">内受限空间中飞行的多架四轴飞行器进行实验<span class="ff4">,</span>验证了该算法在实际应用中的效果和可靠性<span class="ff3">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP基于朴素贝叶斯分类器实现钞票真伪判汇总21.43KB3月前
    ZIP文献复现基于分布式模型预测控制的多架固定翼无人机的一致控制运行文件“main”“main”是“CalAlluavs”和“ShowAlluavs”的组合文件夹“data”中提供了几个无人机数据501.09KB3月前
    ZIP基于PLC的蔬菜大棚设计,西门子S7-200PLC,组态王画面,基于PLC的智能温室控制系统设计- PLC程序,组态王画面,电气图纸,IO分配表,说明书 517.67KB3月前
    ZIPFluent激光焊接数值模拟包括UDF和操作视频,上手便可使用,锥形高斯热源221.08KB3月前
    ZIP基于S7-300 PLC和组态王组态变频恒压供水3泵三泵带解释的梯形图程序,接线图原理图图纸,io分配,组态画面141.9KB3月前
    ZIP基于多项式朴素贝叶斯实现垃圾短信识别汇总30.35MB3月前
    ZIPJava程序设计实验报告2.92MB3月前
    ZIPRule-based和庞特里亚金最小值策略控制的p2混动汽车构型模型基于规则和庞特里亚金的控制策略的对比验证Cruise与Matlab dll方式联合仿真有控制策略详细的文档说明用点心就能看懂279KB3月前