首页下载资源移动开发基于yolov8-firedetection的火灾探测部署.zip

ZIP基于yolov8-firedetection的火灾探测部署.zip

2401_8945158819.81MB需要积分:1

资源文件列表:

基于yolov8-firedetection的火灾探测部署.zip 大约有10个文件
  1. yolov8_firedetection-main/.gitignore 54B
  2. yolov8_firedetection-main/app.py 1.99KB
  3. yolov8_firedetection-main/config.py 1.25KB
  4. yolov8_firedetection-main/README.md 4.9KB
  5. yolov8_firedetection-main/requirements.txt 111B
  6. yolov8_firedetection-main/utils.py 5.2KB
  7. yolov8_firedetection-main/weights/detection/best_train.pt 21.49MB
  8. yolov8_firedetection-main/__pycache__/config.cpython-310.pyc 945B
  9. yolov8_firedetection-main/__pycache__/utils.cpython-310.pyc 4.26KB
  10. 一个基于yolov8的火灾检测部署_yolov8_firedetection/项目内附说明/如果解压失败请用ara软件解压.txt 42B

资源介绍:

基于yolov8-firedetection的火灾探测部署.zip
# YOLOv8 Streamlit APP


Ultralytics CI YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

## Introduction This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) and the interface is powered by [Streamlit](https://github.com/streamlit/streamlit). It could serve as a resource for future reference while working on your own projects. ## Features - Feature1: Object detection task. - Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x` - Feature3: Multiple input formats. `Image`, `Video`, `Webcam` ## Interactive Interface ### Image Input Interface ![image_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/image_input_demo.png) ### Video Input Interface ![video_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/video_input_demo.png) ### Webcam Input Interface ![webcam_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/webcam_input_demo.png) ## Installation ### Create a new conda environment ```commandline # create conda create -n yolov8-streamlit python=3.8 -y # activate conda activate yolov8-streamlit ``` ### Clone repository ```commandline git clone https://github.com/JackDance/YOLOv8-streamlit-app ``` ### Install packages ```commandline # yolov8 dependencies pip install ultralytics # Streamlit dependencies pip install streamlit ``` ### Download Pre-trained YOLOv8 Detection Weights Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below. | Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) | | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 | | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 | | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 | | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 | | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 | ## Run ```commandline streamlit run app.py ``` Then will start the Streamlit server and open your web browser to the default Streamlit page automatically. ## TODO List - Add `Tracking` capability. - Add `Classification` capability. - Add `Pose estimation` capability. *** If you also like this project, you may wish to give a `star` (^.^)✨ . If any questions, please raise `issue`~
100+评论
captcha