ZIP全向运动模型与动态窗口DWA算法:动态避障策略在MATLAB中的实现与应用,全向运动模型,动态窗口DWA,动态避障,matlab,全向运动模型; 动态窗口DWA; 动态避障; MATLAB,基于全向 41.08KB

mhIWHpFRgv需要积分:2(1积分=1元)

资源文件列表:

全向运动模型动态窗口动态避.zip 大约有10个文件
  1. 1.jpg 49.52KB
  2. 以下是一篇基于您提供的主题的完整源码和数据.doc 2.15KB
  3. 全向运动模型与动态窗口在动态避.txt 1.6KB
  4. 全向运动模型与动态窗口在动态避障中的.txt 1.82KB
  5. 全向运动模型与动态窗口在动态避障中的应用研究.txt 1.85KB
  6. 全向运动模型动态窗口动态避障.html 10.19KB
  7. 全向运动模型动态窗口及动态避障.doc 1.74KB
  8. 全向运动模型动态窗口及动态避障在中.txt 1.81KB
  9. 全向运动模型动态窗口及动态避障的仿真研究一.txt 2.08KB
  10. 全向运动模型动态窗口及动态避障的实现一引言在机器.txt 1.68KB

资源介绍:

全向运动模型与动态窗口DWA算法:动态避障策略在MATLAB中的实现与应用,全向运动模型,动态窗口DWA,动态避障,matlab ,全向运动模型; 动态窗口DWA; 动态避障; MATLAB,基于全向运动模型的动态窗口DWA避障算法在MATLAB中的实现
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341517/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341517/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">以下是一篇基于您提供的主题的<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>完整源码和数据集的示例文章<span class="ff3">,</span>以满足您的要求<span class="ff4">。</span></div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">**<span class="ff1">基于<span class="_ _0"> </span></span>MFO-TCN-BiGRU-Attention<span class="_ _1"> </span><span class="ff1">飞蛾扑火算法优化的多变量时间序列预测</span>**</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">多变量时间序列预测是机器学习领域中常见的问题<span class="ff3">,</span>它涉及到根据历史数据预测未来趋势<span class="ff4">。</span>本文将使</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">用<span class="_ _0"> </span><span class="ff2">Matlab 2023<span class="_ _1"> </span></span>版以上<span class="ff3">,</span>基于<span class="_ _0"> </span><span class="ff2">MFO-TCN<span class="ff3">(</span></span>时间卷积网络<span class="ff3">)</span>和<span class="_ _0"> </span><span class="ff2">BiGRU<span class="ff3">(</span></span>双向门控循环单元<span class="ff3">)</span>模型融</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">合注意力机制进行飞蛾扑火算法优化的时间序列预测<span class="ff3">,</span>包括数据的完整源码和数据集的处理<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>模型架构</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">飞蛾扑火算法优化<span class="ff3">:</span>我们采用飞蛾扑火算法来优化模型中的关键参数<span class="ff3">,</span>包括学习率<span class="ff4">、</span>神经元个数</span></div><div class="t m0 x2 h2 y9 ff4 fs0 fc0 sc0 ls0 ws0">、<span class="ff1">注意力机制的键值和正则化参数</span>。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>MFO-TCN-BiGRU<span class="_ _1"> </span><span class="ff1">模型<span class="ff3">:</span>模型包含一个基于<span class="_ _0"> </span></span>MFO<span class="_ _1"> </span><span class="ff1">优化的时间卷积网络<span class="ff3">(</span></span>TCN<span class="ff3">)<span class="ff1">和一个双向门控</span></span></div><div class="t m0 x2 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">循环单元<span class="ff3">(<span class="ff2">BiGRU</span>)<span class="ff4">。</span></span>这两个部分结合在一起<span class="ff3">,</span>利用各自的优点<span class="ff3">,</span>用于处理时间序列数据<span class="ff4">。</span>此外</div><div class="t m0 x2 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">还加入了注意力机制</span>,<span class="ff1">以便在预测过程中对不同特征进行加权<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>数据集与预处理</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">本例中使用的数据集为<span class="_ _0"> </span><span class="ff2">data<span class="ff3">,</span></span>需要进行必要的预处理以适应模型的输入要求<span class="ff4">。</span>预处理步骤包括数据</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">清洗<span class="ff4">、</span>特征提取<span class="ff4">、</span>归一化等<span class="ff4">。</span>在处理多变量时间序列时<span class="ff3">,</span>应考虑历史特征的影响<span class="ff3">,</span>以捕捉时间序列的</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">动态特性<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、<span class="ff2">Matlab<span class="_ _1"> </span></span></span>代码实现</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">以下是主运行文件<span class="_ _0"> </span><span class="ff2">main.m<span class="_ _1"> </span></span>的代码框架<span class="ff3">:</span></div><div class="t m0 x1 h3 y13 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">加载数据集<span class="_ _0"> </span></span>data</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">预处理数据<span class="ff3">(</span>如归一化等<span class="ff3">)</span></span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">定义模型参数<span class="ff3">(</span>如学习率<span class="ff4">、</span>神经元个数等<span class="ff3">)</span></span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">初始化<span class="_ _0"> </span></span>MFO-TCN-BiGRU-Attention<span class="_ _1"> </span><span class="ff1">模型</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">训练模型</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">进行多变量时间序列预测</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">计算<span class="_ _0"> </span></span>R2<span class="ff4">、</span>MSE<span class="ff4">、</span>MAE<span class="ff4">、</span>MAPE<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>RMSE<span class="_ _1"> </span><span class="ff1">评价指标</span></div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">输出评价结果到命令窗口</span></div><div class="t m0 x1 h3 y1c ff2 fs0 fc0 sc0 ls0 ws0">```</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP"混合型模块化多电平双端模型研究:电源负载下的N个半桥臂动态控制与电压均衡策略",混合型模块化多电平(MMC)双端模型 电源与负载单个半桥臂N=10直流侧母线电压为12000V双闭环控制 采742.86KB2月前
    ZIP"基于LeNet-5模型和卷积神经网络的MATLAB手写数字识别系统,采用自制的5*5大小数字数据集,结合主成分分析优化图像像素处理,实现了图像和手写板输入两种方式,训练过程表现良好,识别准确率高达9474.1KB2月前
    ZIP基于Matlab的智能停车场车牌识别计时计费管理系统:实战应用与优化升级的GUI界面解决方案,基于Matlab的车牌识别停车场出入库计时计费管理系统(含GUI界面)车牌识别基于计算机视觉,数字图1.35MB2月前
    ZIP高斯烟羽模型Matlab源码(最新版),matlab版本高斯烟羽模型源码,matlab;版本;高斯烟羽模型;源码;,高斯烟羽模型Matlab源码126.35KB2月前
    ZIP基于WOA-TCN-BiGRU-Attention算法的Matlab多变量时间序列预测完整源码与数据集:包含学习率、神经元数及注意力机制参数优化,输出R2、MSE、MAE、MAPE与RMSE多维度评价266.86KB2月前
    ZIP多目标粒子群算法MOPSO的Matlab实现:涵盖多种测试函数与评价指标的工程应用案例研究,多目标粒子群算法MOPSO,Matlab实现 测试函数包括ZDT、DTLZ、WFG、CF、UF和MM452.45KB2月前
    ZIPMatlab 2023版以上多变量时间序列预测模型:CPO-TCN-BiGRU-Attention算法优化与多指标评价完整源码集,Matlab完整源码和数据1.基于CPO-TCN-BiGRU-Att290.51KB2月前
    ZIP"Matlab 2023版以上多变量时间序列预测完整源码及数据集:基于NGO-TCN-BiGRU-Attention模型优化,含R2、MSE等多指标评价及参数优化",Matlab完整源码和数据1.基256.58KB2月前