ZIP深度学习神经网络RNN、LSTM与GRU在锂离子电池SOH预测中的应用-基于NASA数据集的Python代码实现策略,深度学习在锂离子电池SOH预测中的应用:基于RNN、LSTM和GRU神经网络的N 1.03MB

mDJzZbgVFea需要积分:4(1积分=1元)

资源文件列表:

基于深度学习神经网络的锂离子电池预 大约有13个文件
  1. 1.jpg 42.36KB
  2. 2.jpg 62.47KB
  3. 3.jpg 71.08KB
  4. 4.jpg 34.91KB
  5. 基于深度学习神经网络的锂离子.html 309.57KB
  6. 基于深度学习神经网络的锂离子电池.txt 1.93KB
  7. 基于深度学习神经网络的锂离子电池健康状态.txt 1.98KB
  8. 基于深度学习神经网络的锂离子电池预.html 309.11KB
  9. 基于深度学习神经网络的锂离子电池预.txt 1.75KB
  10. 基于深度学习神经网络的锂离子电池预测一引.html 310.6KB
  11. 基于深度学习神经网络的锂离子电池预测一引言随着电.doc 1.96KB
  12. 基于深度学习神经网络的锂离子电池预测数据集.html 311.34KB
  13. 基于深度学习神经网络的锂离子电池预测研.txt 1.89KB

资源介绍:

深度学习神经网络RNN、LSTM与GRU在锂离子电池SOH预测中的应用——基于NASA数据集的Python代码实现策略,深度学习在锂离子电池SOH预测中的应用:基于RNN、LSTM和GRU神经网络的NASA数据集Python代码实现研究,基于深度学习神经网络RNN、LSTM、GRU的锂离子电池SOH预测,NASA数据集,Python代码实现。 ,RNN; LSTM; GRU; 锂离子电池SOH预测; NASA数据集; Python代码实现。,深度学习预测锂离子电池SOH:RNN、LSTM、GRU模型NASA数据集Python实现
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405505/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405505/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于深度学习神经网络<span class="_ _0"> </span></span>RNN<span class="ff3">、</span>LSTM<span class="ff3">、</span>GRU<span class="_ _1"> </span><span class="ff2">的锂离子电池<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">预测</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着电动汽车和智能电网的快速发展<span class="ff4">,</span>锂离子电池<span class="ff4">(<span class="ff1">LIB</span>)</span>的健広状态<span class="ff4">(<span class="ff1">State of Health</span>,<span class="ff1">SOH</span></span></div><div class="t m0 x1 h2 y4 ff4 fs0 fc0 sc0 ls0 ws0">)<span class="ff2">预测变得尤为重要<span class="ff3">。<span class="ff1">SOH<span class="_ _1"> </span></span></span>是衡量电池性能的重要指标</span>,<span class="ff2">准确预测<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>可以延长电池寿命</span>,<span class="ff2">提高使用</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">效率<span class="ff3">。</span>本文将探讨如何利用深度学习中的循环神经网络<span class="ff4">(<span class="ff1">RNN</span>)<span class="ff3">、</span></span>长短期记忆网络<span class="ff4">(<span class="ff1">LSTM</span>)</span>和门控循</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">环单元<span class="ff4">(<span class="ff1">GRU</span>)</span>对锂离子电池的<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>进行预测<span class="ff4">,</span>并采用<span class="_ _0"> </span><span class="ff1">NASA<span class="_ _1"> </span></span>提供的数据集和<span class="_ _0"> </span><span class="ff1">Python<span class="_ _1"> </span></span>代码实现<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>相关技术概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">锂离子电池<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">预测的重要性<span class="ff4">:</span>锂离子电池的<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">反映了其随着使用时间的推移性能退化的程</span></div><div class="t m0 x2 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">度<span class="ff3">。</span>准确预测<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>对于电池管理系统<span class="ff4">(<span class="ff1">BMS</span>)</span>至关重要<span class="ff4">,</span>有助于避免电池过充<span class="ff3">、</span>过放等潜在风险</div><div class="t m0 x2 h3 ya ff3 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">深度学习神经网络<span class="ff4">:</span></span></div><div class="t m0 x3 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>RNN<span class="ff4">:<span class="ff2">适合处理序列数据</span>,<span class="ff2">能够捕捉时间序列数据中的依赖关系<span class="ff3">。</span></span></span></div><div class="t m0 x3 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>LSTM<span class="ff4">:<span class="ff2">在<span class="_ _0"> </span></span></span>RNN<span class="_ _1"> </span><span class="ff2">的基础上增加了门控机制<span class="ff4">,</span>可以更好地捕捉序列中的长期依赖关系<span class="ff3">。</span></span></div><div class="t m0 x3 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>GRU<span class="ff4">:<span class="ff2">与<span class="_ _0"> </span></span></span>LSTM<span class="_ _1"> </span><span class="ff2">类似<span class="ff4">,</span>但结构更简单<span class="ff4">,</span>参数更少<span class="ff3">。</span></span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">3. NASA<span class="_ _1"> </span><span class="ff2">数据集<span class="ff4">:</span></span>NASA<span class="_ _1"> </span><span class="ff2">提供了大量关于锂离子电池性能的数据<span class="ff4">,</span>包括电压<span class="ff3">、</span>电流<span class="ff3">、</span>温度等参数<span class="ff4">,</span>为</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">我们的研究提供了丰富的资源<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>模型构建与实现</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">数据预处理<span class="ff4">:</span>首先<span class="ff4">,</span>我们需要对<span class="_ _0"> </span></span>NASA<span class="_ _1"> </span><span class="ff2">提供的数据集进行预处理<span class="ff4">,</span>包括数据清洗<span class="ff3">、</span>标准化和划分</span></div><div class="t m0 x2 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">训练集与测试集等步骤<span class="ff3">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">构建模型<span class="ff4">:</span>根据锂离子电池的特性<span class="ff4">,</span>我们选择使用<span class="_ _0"> </span></span>RNN<span class="ff3">、</span>LSTM<span class="_ _1"> </span><span class="ff2">或<span class="_ _0"> </span></span>GRU<span class="_ _1"> </span><span class="ff2">构建模型<span class="ff3">。</span>这些模型能够</span></div><div class="t m0 x2 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">捕捉电池性能随时间变化的特征<span class="ff4">,</span>从而预测<span class="_ _0"> </span><span class="ff1">SOH<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>Python<span class="_ _1"> </span><span class="ff2">代码实现<span class="ff4">:</span>我们使用<span class="_ _0"> </span></span>Python<span class="_ _1"> </span><span class="ff2">语言和深度学习框架<span class="ff4">(</span>如<span class="_ _0"> </span></span>TensorFlow<span class="_ _1"> </span><span class="ff2">或<span class="_ _0"> </span></span>PyTorch<span class="ff4">)<span class="ff2">实</span></span></div><div class="t m0 x2 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">现模型<span class="ff3">。</span>具体代码包括定义模型结构<span class="ff3">、</span>编译模型<span class="ff3">、</span>训练模型和评估模型等步骤<span class="ff3">。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>实验与结果分析</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">实验设置<span class="ff4">:</span>我们使用<span class="_ _0"> </span></span>NASA<span class="_ _1"> </span><span class="ff2">数据集中的一部分数据作为训练集<span class="ff4">,</span>另一部分作为测试集<span class="ff3">。</span>在实验中</span></div><div class="t m0 x2 h2 y1a ff4 fs0 fc0 sc0 ls0 ws0">,<span class="ff2">我们分别使用<span class="_ _0"> </span><span class="ff1">RNN<span class="ff3">、</span>LSTM<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff1">GRU<span class="_ _1"> </span></span>构建模型</span>,<span class="ff2">并对比它们的性能<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计研究,西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计,55#西门子2.95MB2月前
    ZIP多配送中心选址与车辆路径优化的集成策略:遗传算法在MDVRPTW中的应用及其Matlab代码解析,多配送中心选址与车辆路径优化问题的遗传算法研究:Matlab完整代码实现及数据可修改,多配送中心车辆路3.28MB2月前
    ZIP两级式单相光伏并网仿真研究:MATLAB 2021a版本下的DC-DC变换与桥式逆变技术实现功率跟踪与并网效果优化,基于Matlab 2021a的两级式单相光伏并网仿真研究:实现最大功率跟踪与稳定的直575.85KB2月前
    ZIPjavaWeb楠小弟自助图书系统项目,使用注解方式配合原生js、axios方式完成整个项目的开发,系统只适合在javaWeb阶段19.84MB2月前
    ZIP西门子S7-200 PLC在加热炉温度控制与电气设计中的应用研究:基于MCGS组态的控制系统设计,基于西门子S7-200 PLC的加热炉温度控制与电气设计:使用MCGS组态的实践应用,44#西门子S72.78MB2月前
    ZIP扫地机器人路径规划与AGV全覆盖移动避障算法研究:深度优先搜索与随机碰撞策略比较,扫地机器人路径规划与AGV全覆盖移动避障算法研究:深度优先搜索与随机碰撞策略比较,AGV全覆盖移动避障路径规划扫地机3.96MB2月前
    ZIP多源联合系统优化调度:风光火、抽水蓄能及蓄电池整合策略,MATLAB+Yalmip编码+Cplex求解,注释详尽,初学者指南,多源联合系统优化调度:风光火储能系统协同运作与MATLAB实现方法,多源联1.62MB2月前
    ZIP基于COMSOL仿真的电磁超声压电接收技术在铝板裂纹检测中的应用研究,COMSOL模拟:电磁超声压电接收技术在铝板裂纹检测中的应用,comsol电磁超声压电接收EMAT在1mm厚铝板中激励250kH934.2KB2月前