ZIP基于多智能体技术的自适应时变编队跟踪控制观测器研究,基于多智能体观测器的自适应时变编队跟踪控制策略研究,多智能体自适应时变编队跟踪控制;编队跟踪;多智能体;观测器,核心关键词:多智能体;自适应时变编 1.49MB

wnoOURnlTMYV需要积分:2(1积分=1元)

资源文件列表:

多智能体自适应时变编队 大约有17个文件
  1. 1.jpg 53.16KB
  2. 2.jpg 61.58KB
  3. 3.jpg 73.23KB
  4. 4.jpg 73.03KB
  5. 5.jpg 73.08KB
  6. 6.jpg 74.06KB
  7. 7.jpg 83.32KB
  8. 8.jpg 85.06KB
  9. 关于多智能体自适应时变编队跟踪.txt 2.07KB
  10. 在复杂动态的系统中多智能体自适应时变编队.html 798.51KB
  11. 多智能体自适应时变编队跟踪控.html 797.88KB
  12. 多智能体自适应时变编队跟踪控制技.doc 1.75KB
  13. 多智能体自适应时变编队跟踪控制技.txt 2.03KB
  14. 多智能体自适应时变编队跟踪控制技术分析一引言在快速.txt 2.62KB
  15. 多智能体自适应时变编队跟踪控制技术分析一引言随着.txt 2.13KB
  16. 标题探索多智能体自适应时变编队跟踪控制的奥秘摘.txt 2.9KB
  17. 近年来随着无人系统和多智能体技术的快速发展多智能体.txt 1.66KB

资源介绍:

基于多智能体技术的自适应时变编队跟踪控制观测器研究,基于多智能体观测器的自适应时变编队跟踪控制策略研究,多智能体自适应时变编队跟踪控制;编队跟踪;多智能体;观测器 ,核心关键词:多智能体;自适应时变编队;跟踪控制;编队跟踪;观测器。,多智能体观测器在时变环境下的编队跟踪控制研究
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405212/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405212/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">多智能体自适应时变编队跟踪控制技术在近年来得到了广泛的研究和应用<span class="ff2">。</span>随着无人系统的快速发展</div><div class="t m0 x1 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">多智能体系统在各个领域中扮演着越来越重要的角色<span class="ff2">。</span>多智能体编队控制是指一组智能体通过合作</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">与协调<span class="ff3">,</span>形成特定的编队结构并达到预定的任务目标<span class="ff2">。</span>本文着重讨论多智能体自适应时变编队跟踪控</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">制技术的研究进展和应用场景<span class="ff2">。</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff3">,</span>我们需要明确什么是多智能体编队跟踪<span class="ff2">。</span>多智能体编队跟踪是指通过合理的控制策略<span class="ff3">,</span>使得多</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">个无人系统在一定的约束条件下<span class="ff3">,</span>能够在复杂的环境中实现对目标的跟踪和协同工作<span class="ff2">。</span>这对于无人系</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">统的自主导航和任务执行至关重要<span class="ff2">。</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">多智能体编队跟踪的核心技术是自适应时变控制<span class="ff2">。</span>自适应时变控制是一种基于模型参考自适应控制策</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">略<span class="ff3">,</span>可以适应系统的外部环境变化和内部参数变化<span class="ff3">,</span>实现对目标的精准跟踪<span class="ff2">。</span>具体而言<span class="ff3">,</span>通过引入自</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">适应观测器<span class="ff3">,</span>可以实时估计系统的状态变量<span class="ff3">,</span>从而实现对目标运动的跟踪和控制<span class="ff2">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在多智能体编队控制中<span class="ff3">,</span>观测器起到了至关重要的作用<span class="ff2">。</span>观测器是一种用于估计系统未知状态的动力</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">学模型<span class="ff2">。</span>通过观测器<span class="ff3">,</span>可以实时估计系统的状态变量<span class="ff3">,</span>从而实现对目标的跟踪和控制<span class="ff2">。</span>自适应时变编</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">队控制技术中<span class="ff3">,</span>观测器的设计和优化是一个研究热点<span class="ff2">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">针对多智能体自适应时变编队跟踪控制<span class="ff3">,</span>研究者们提出了多种不同的方法和算法<span class="ff2">。</span>其中<span class="ff3">,</span>基于模型参</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">考自适应控制算法是最为常见和有效的一种方法<span class="ff2">。</span>该算法通过引入自适应观测器<span class="ff3">,</span>实时估计系统的状</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">态变量<span class="ff3">,</span>并根据参考模型的要求<span class="ff3">,</span>对系统进行控制<span class="ff2">。</span>此外<span class="ff3">,</span>还有一些基于神经网络和模糊控制的方法</div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">具有一定的应用潜力<span class="ff2">。</span></span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">多智能体编队跟踪控制技术具有广泛的应用前景<span class="ff2">。</span>在机器人领域<span class="ff3">,</span>多智能体编队控制可以应用于无人</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">机编队飞行<span class="ff2">、</span>无人车协同行驶等场景<span class="ff2">。</span>在智能制造领域<span class="ff3">,</span>多智能体编队控制可以应用于机器人协作装</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">配<span class="ff2">、</span>自动化仓储物流等任务<span class="ff2">。</span>在军事领域<span class="ff3">,</span>多智能体编队控制可以应用于无人侦察<span class="ff2">、</span>无人战斗等作战</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">任务<span class="ff2">。</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">总之<span class="ff3">,</span>多智能体自适应时变编队跟踪控制技术在无人系统中具有重要的应用价值<span class="ff2">。</span>通过合理的控制策</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">略和自适应观测器的设计<span class="ff3">,</span>可以实现对目标的精准跟踪和协同工作<span class="ff2">。</span>未来<span class="ff3">,</span>随着无人系统技术的不断</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">发展<span class="ff3">,</span>多智能体编队控制技术将在更多领域中得到应用<span class="ff3">,</span>并发挥重要的作用<span class="ff2">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP基于双馈发电机与电池储能系统的频率调节控制策略Simulink模型研究,基于双馈发电机与电池储能系统的频率调节控制策略Simulink模型研究,风储调频 使用双馈发电机(DFIG)相关的电池储能系统2.33MB2月前
    ZIP基于PID与滑模控制器的PMSM电机转速控制及全状态参数观测Simulink模型研究,基于PID与滑模控制器的PMSM电机转速控制及全状态参数观测Simulink模型研究,PMSM电机的转速控制Sim741.72KB2月前
    ZIP电池控制模型与充放电策略:SOC监控、傅里叶分析与BMS管理功能详解及操作指南,电池控制模型:包含SOC与充放电策略、BMS管理以及傅里叶分析的详细注释和运行说明,电池控制模型 充放电策略 BMS S1.98MB2月前
    ZIPMATLAB中蚁群算法在TSP问题上的应用研究,MATLAB实现蚁群算法求解旅行商TSP问题的优化策略,MATLAB 用蚁群算法解决旅行商TSP问题,MATLAB; 蚁群算法; 旅行商TSP问题411.65KB2月前
    ZIP三菱与MCGS联合打造的自动洗衣机智能控制系统:组态模拟仿真与PLC程序实践,三菱与MCGS联合打造的自动洗衣机智能控制系统:组态模拟仿真与PLC程序实践,三菱和MCGS自动洗衣机控制系统组态模拟仿真1.24MB2月前
    ZIP基于ABAQUS的CEL算法水压突破密封垫模型研究:从建模思路到后处理详解,基于ABAQUS的CEL算法水压突破密封垫模型研究:模拟盾构隧道接缝防水机制与密封垫破坏状态,ABAQUS水压突破密封垫(C649.83KB2月前
    ZIPBLDC矢量控制仿真模型性能展示:转速1500r/min稳定运行,可升级滑模控制并应用霍尔六步换相双闭环控制策略,BLDC矢量控制仿真模型性能卓越,转速达1500r/min稳定运行,可升级至滑模控制并726.82KB2月前
    ZIP风电-光伏-光热电站N-k安全优化调度模型:灵活性与经济性结合,求解风光消纳与弃风弃光问题,基于matlab与求解器的高效应用,风电-光伏-光热电站N-k安全优化调度模型:考虑调度灵活性与经济性,对比2.97MB2月前