ZIP基于自适应无迹卡尔曼滤波算法的锂离子电池SOC估计技术研究,自适应无迹卡尔曼滤波算法在锂离子电池荷电状态SOC估计中的应用与优化,基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计 271.1KB

iRRbbATr需要积分:2(1积分=1元)

资源文件列表:

基于自适应无迹卡尔曼滤波算法锂离子电池荷电 大约有10个文件
  1. 1.jpg 94.58KB
  2. 基于自适应无迹卡尔曼.html 154.48KB
  3. 基于自适应无迹卡尔曼滤波算法的锂.txt 1.8KB
  4. 基于自适应无迹卡尔曼滤波算法的锂离子.txt 2.1KB
  5. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状.html 156.34KB
  6. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态.txt 1.75KB
  7. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态估.txt 2.34KB
  8. 探索算法锂离子电池估计的深度解析在电动汽车.txt 2.16KB
  9. 本文将介绍一种基于自适应无迹卡.txt 1.35KB
  10. 标题基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状.doc 1.81KB

资源介绍:

基于自适应无迹卡尔曼滤波算法的锂离子电池SOC估计技术研究,自适应无迹卡尔曼滤波算法在锂离子电池荷电状态SOC估计中的应用与优化,基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计。 ,基于AUKF算法;锂离子电池;SOC估计;荷电状态;无迹卡尔曼滤波算法;电池状态估计,基于AUKF算法的锂离子电池SOC估计技术研究
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401728/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401728/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>随着电动汽车等领域的快速发展<span class="ff2">,</span>锂离子电池作为重要的能源储存装置之一<span class="ff2">,</span>其荷电状态<span class="ff2">(</span></div><div class="t m0 x1 h2 y3 ff3 fs0 fc0 sc0 ls0 ws0">State of Charge<span class="ff2">,</span>SOC<span class="ff2">)<span class="ff1">估计的准确性变得越来越重要<span class="ff4">。</span>本文基于自适应无迹卡尔曼滤波算法</span>(</span></div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">Adaptive Unscented Kalman Filter<span class="ff2">,</span>AUKF<span class="ff2">),<span class="ff1">对锂离子电池的<span class="_ _0"> </span></span></span>SOC<span class="_ _1"> </span><span class="ff1">进行估计<span class="ff4">。</span>通过对实际</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">测试数据的分析<span class="ff2">,</span>证明了<span class="_ _0"> </span><span class="ff3">AUKF<span class="_ _1"> </span></span>算法在<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计方面的优越性和有效性<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">关键词<span class="ff2">:</span>锂离子电池<span class="ff2">;</span>荷电状态<span class="ff2">(<span class="ff3">SOC</span>)</span>估计<span class="ff2">;</span>自适应无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">AUKF</span>)</span></div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">电动汽车等能源领域的发展对锂离子电池荷电状态<span class="ff2">(<span class="ff3">State of Charge</span>,<span class="ff3">SOC</span>)</span>估计提出了更高的</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">要求<span class="ff4">。</span>准确的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计能够提高电池系统的可靠性<span class="ff4">、</span>增强对电池工作状态的了解<span class="ff2">,</span>并有效延长电池的</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">寿命<span class="ff4">。</span>然而<span class="ff2">,</span>由于电池的非线性<span class="ff4">、</span>不确定性以及不可观测性等因素<span class="ff2">,<span class="ff3">SOC<span class="_ _1"> </span></span></span>估计面临着一定的挑战<span class="ff4">。</span>因</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">此<span class="ff2">,</span>本文提出了一种基于自适应无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">AUKF</span>)</span>的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计方法<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">锂离子电池<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计的问题与挑战</span></div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span><span class="ff1">锂离子电池的特性与模型</span></div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span>SOC<span class="_ _1"> </span><span class="ff1">估计的问题</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">2.3.<span class="_"> </span><span class="ff1">传统<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计方法存在的不足</span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">自适应无迹卡尔曼滤波算法</span></div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">3.1.<span class="_"> </span><span class="ff1">无迹卡尔曼滤波算法原理</span></div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">3.2.<span class="_"> </span><span class="ff1">自适应无迹卡尔曼滤波算法的改进</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">3.3.<span class="_"> </span>AUKF<span class="_ _1"> </span><span class="ff1">算法的优势与适用性</span></div><div class="t m0 x1 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">基于<span class="_ _0"> </span></span>AUKF<span class="_ _1"> </span><span class="ff1">的<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计方法</span></div><div class="t m0 x1 h2 y15 ff3 fs0 fc0 sc0 ls0 ws0">4.1.<span class="_"> </span>SOC<span class="_ _1"> </span><span class="ff1">估计模型建立</span></div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">4.2.<span class="_"> </span>AUKF<span class="_ _1"> </span><span class="ff1">算法在<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计中的应用</span></div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">4.3.<span class="_"> </span><span class="ff1">算法参数的选择与自适应调节</span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">实验结果与分析</span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">5.1.<span class="_"> </span><span class="ff1">实验环境与数据采集</span></div><div class="t m0 x1 h2 y1a ff3 fs0 fc0 sc0 ls0 ws0">5.2.<span class="_"> </span><span class="ff1">基于<span class="_ _0"> </span></span>AUKF<span class="_ _1"> </span><span class="ff1">的<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计结果分析</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">5.3.<span class="_"> </span><span class="ff1">与传统方法的对比分析</span></div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">6.<span class="_ _2"> </span><span class="ff1">结论与展望</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIPCOMSOL超声管道导波检测技术:侧面等效力源激励下的钢管裂纹识别与点探针接收波形分析,COMSOL超声管道导波检测技术:利用等效力源激励对特定钢管进行高精度200kHz导波检测与裂纹识别,comso905.39KB2月前
    ZIPSimulink仿真实现锂电池恒压放电与横流充电:直接转矩控制驱动电机及双向DCDC电路应用,Simulink仿真实现锂电池恒压放电与横流充电:直接转矩控制驱动电机及双向DCDC电路研究,simuli407.44KB2月前
    ZIP基于Comsol压电横波双晶探头的深度缺陷检测技术-优化表面波和纵波直探头的盲区问题,针对表面波受平整度干扰及纵波直探头盲区问题的双晶探头-高精度Comsol压电横波检测系统,comsol压电横波241.58KB2月前
    ZIP西门子S7-1500 PLC实现飞剪功能的创新算法研究:突破凸轮同步限制,以多项式计算曲线运动,实现高性价比飞剪程序探索 ,西门子S7-1500 PLC飞剪程序研究:突破原始算法限制,实现多项式曲线运1.81MB2月前
    ZIP基于COMSOL的楔块内置亚克力横波裂纹自动检测技术研究,COMSOL横波裂纹检测技术:基于楔块内置亚克力塑料的超声波源和自发自收模式,对钢材料裂纹的精准探测,comsol横波裂纹检测楔块为内置材料515.77KB2月前
    ZIP基于ESMINI可视化的Lattice自动驾驶规划仿真系统:自定义道路与场景探索,Lattice自动驾驶规划仿真系统:基于Esmini可视化自定义道路与场景探索,lattice自动驾驶规划仿真基于e1.14MB2月前
    ZIP基于MATLAB GUI平台的FIR去噪滤波器设计及其在音频信号处理中的应用研究,基于MATLAB GUI的数字信号处理音频降噪:FIR去噪滤波器的设计与实践分析 ,基于matlab的数字信号处理音频1.02MB2月前
    ZIPCOMSOL仿真:金属光栅SPR折射率传感仿真-物理光学模型的实践应用研究,COMSOL模拟物理光学模型中的金属光栅表面等离子体共振折射率传感应用研究,COMSOL物理光学模型:金属光栅SPR折射率2.71MB2月前