资源摘要:MATLAB 2022a中基于2024年新算法的SVM参数优化研究:利用NRBO算法优化RBF函数惩罚与核参数,支持5分类任务的SVM性能评估,"MATLAB 2022a环境下应用新型NRBO算法优化SVM的RBF参数——以损失为适应度函数,实现5分类任务的高效与全局最优解",MATLAB2022a2024新算法牛顿-拉夫逊优化器(Newton-Raphson-based optimizer,NRBO), 优化支持向量机SVM的RBF函数的惩罚参数与核参数,以SVM的损失为适应度函数,如果有自己适应度函数,有专门的函数直接替就行。并使用60%数据集训练SVM,40%数据集测试SVM的性能。SVM用于5分类,每一类是一个矩阵,矩阵的每一行为一个特征向量,一个特征向量有5个特征值,如下图。NRBO具有更快的收敛速度,有更好的全局最优解,2024最近发表的算法,你用就是创新,MATLAB2022a; 牛顿-拉夫逊优化器(NRBO); SVM优化; 惩罚参数; 核参数; 适应度函数; 数据集分割; 5分类; 特征向量; 特征值; 快速收敛; 全局最优解; 创新算法,MATLAB 2