ZIP基于Matlab平台的CNN-LSTM组合算法精准回归预测,注释清晰,轻松套用个人数据,基于Matlab平台的CNN-LSTM组合算法高效回归预测,精准预测,注释清晰,适用于多种数据场景,cnn-ls 1.13MB

SIrZrpeGHauw需要积分:3(1积分=1元)

资源文件列表:

组合算法回归预测采用平台预测精准程序注释清楚只需要 大约有12个文件
  1. 1.jpg 58.93KB
  2. 2.jpg 175.67KB
  3. 卷积神经网络与长短期记忆网络是一种强大的组合.docx 15.25KB
  4. 在机器学习领域算法的预测准确性.docx 49.54KB
  5. 基于组合算法的回归预测模型在平台上的实现一引言本文.docx 51.77KB
  6. 深度学习与组合算法回归预测技.html 341.38KB
  7. 深度学习与组合算法回归预测技术分析一引.html 342.25KB
  8. 深度学习在技术分析中的实践组合.docx 50.08KB
  9. 组合算法回归预测在平台实践一背.docx 49.96KB
  10. 组合算法回归预测采用平台预.html 341.14KB
  11. 组合算法在回归预测领域中具有很高的准确性和广泛的应.docx 14.11KB
  12. 迈向精准预测如何利用组合算法在平台.docx 50.08KB

资源介绍:

基于Matlab平台的CNN-LSTM组合算法精准回归预测,注释清晰,轻松套用个人数据,基于Matlab平台的CNN-LSTM组合算法高效回归预测,精准预测,注释清晰,适用于多种数据场景,cnn-lstm组合算法回归预测,采用matlab平台,预测精准,程序注释清楚,只需要将自己的数据套用进去即可。 ,核心关键词:cnn-lstm组合算法; 回归预测; matlab平台; 预测精准; 程序注释清楚; 数据套用。,Matlab平台下的CNN-LSTM组合算法回归预测:精准套用,注释清晰
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426822/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426822/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">CNN-LSTM<span class="_ _0"> </span></span>组合算法的回归预测模型在<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>平台上的实现</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">本文<span class="_ _1"></span>将介<span class="_ _1"></span>绍一<span class="_ _1"></span>个基<span class="_ _1"></span>于<span class="_ _0"> </span><span class="ff2">CNN-LSTM<span class="_"> </span></span>组<span class="_ _1"></span>合算<span class="_ _1"></span>法的<span class="_ _1"></span>回归<span class="_ _1"></span>预测<span class="_ _1"></span>模型<span class="_ _1"></span>,并<span class="_ _1"></span>使用<span class="_ _2"> </span><span class="ff2">Matlab<span class="_"> </span></span>平台<span class="_ _1"></span>进行<span class="_ _1"></span>实现<span class="_ _1"></span>。</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">该模型可以有效地对时间序列数据进行预测,<span class="_ _3"></span>具有较高的预测精度。<span class="_ _3"></span>下面将详细介绍该模型</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">的实现过程,并附上清晰的程序注释,以便读者可以将自己的数据套用进去。</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">二、模型架构</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">本模型<span class="_ _1"></span>采用<span class="_ _0"> </span><span class="ff2">CNN</span>(卷<span class="_ _1"></span>积神经网络<span class="_ _1"></span>)和<span class="_ _0"> </span><span class="ff2">LSTM</span>(<span class="_ _1"></span>长短期记忆<span class="_ _1"></span>网络)的组<span class="_ _1"></span>合算法。<span class="_ _1"></span><span class="ff2">CNN<span class="_ _0"> </span></span>能够提</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">取数据的局部特征,<span class="_ _4"></span>而<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _0"> </span></span>则可以处理序列数据中的时间依赖性。<span class="_ _4"></span>因此,<span class="_ _4"></span>这种组合算法可</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">以充分利用两种网络的优点,提高预测精度。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">三、数据预处理</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在开始建模之前,<span class="_ _4"></span>需要对数据进行预处理。<span class="_ _4"></span>这包括数据清洗、<span class="_ _5"></span>数据归一化等步骤。<span class="_ _5"></span>具体操作</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">可依据实际数据情况进行调整。</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">四、模型训练</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _6"> </span><span class="ff1">导入数据:使用<span class="_ _0"> </span></span>Matlab<span class="_ _6"> </span><span class="ff1">的导入数据功能,将预处理后的数据导入到<span class="_ _0"> </span></span>M<span class="_ _1"></span>atlab<span class="_ _6"> </span><span class="ff1">中。</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _6"> </span><span class="ff1">数据划分:将数据划分为训练集和测试集,以便评估模型的性能。</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _6"> </span><span class="ff1">构<span class="_ _1"></span>建模型:<span class="_ _1"></span>使用<span class="_ _0"> </span></span>Matlab<span class="_"> </span><span class="ff1">的神<span class="_ _1"></span>经网络<span class="_ _1"></span>工具箱,<span class="_ _1"></span>构建<span class="_ _0"> </span></span>CNN-LSTM<span class="_"> </span><span class="ff1">组合<span class="_ _1"></span>算法的<span class="_ _1"></span>回归预<span class="_ _1"></span>测模型。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">4. <span class="_ _6"> </span><span class="ff1">训练模型:使用训练集对模型进行训练,通过调整模型的参数来优化模型的性能。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">五、程序实现及注释</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">下面<span class="_ _1"></span>是一<span class="_ _1"></span>个基<span class="_ _1"></span>于<span class="_ _0"> </span><span class="ff2">Matlab<span class="_"> </span></span>的<span class="_ _2"> </span><span class="ff2">CNN-LSTM<span class="_"> </span></span>组合<span class="_ _1"></span>算法<span class="_ _1"></span>回归<span class="_ _1"></span>预测<span class="_ _1"></span>模型<span class="_ _1"></span>的示<span class="_ _1"></span>例代<span class="_ _1"></span>码,<span class="_ _1"></span>程序<span class="_ _1"></span>注释<span class="_ _1"></span>清晰<span class="_ _1"></span>,</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">方便读者理解:</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">导入数据</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">假<span class="_ _1"></span>设数据<span class="_ _1"></span>已经预<span class="_ _1"></span>处理<span class="_ _1"></span>完毕,<span class="_ _1"></span>存储在<span class="_ _1"></span>变量<span class="_ _2"> </span></span>data<span class="_ _0"> </span><span class="ff1">中,<span class="_ _1"></span>其中<span class="_ _0"> </span></span>data<span class="_"> </span><span class="ff1">的<span class="_ _1"></span>维度为<span class="_ _1"></span></span>[<span class="ff1">样本<span class="_ _1"></span>数</span>, <span class="_ _6"> </span><span class="ff1">时<span class="_ _1"></span>间步<span class="_ _1"></span>长</span>, </div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">特征数<span class="ff2">]</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% data = ...; % <span class="_ _6"> </span><span class="ff1">替换为自己的数据</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">划分训练集和测试集</span></div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">假设已经按照一定比例划分好训练集和测试集,分别存储在变量<span class="_ _0"> </span></span>trainData<span class="_ _6"> </span><span class="ff1">和<span class="_ _0"> </span></span>testData<span class="_"> </span><span class="ff1">中</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">% trainData = ...; % <span class="_ _6"> </span><span class="ff1">训练集数据</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">% testData = ...; % <span class="_ _6"> </span><span class="ff1">测试集数据</span></div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">构建<span class="_ _0"> </span></span>CNN-LSTM<span class="_ _6"> </span><span class="ff1">模型</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP基于FPGA的交通灯时序控制设计:A、B通道灯序循环及左转灯定时切换,附仿真结果与工程文档(含quartus与modelsim)可上板,基于FPGA的交通灯时序控制设计:A、B通道灯序循环及左转灯定时1.8MB1月前
    ZIP基于阶梯碳交易成本的综合能源系统低碳优化调度策略:含电转气与碳捕集技术协同优化研究(Matlab+Yalmip+Cplex),基于阶梯碳交易成本的综合能源系统低碳优化调度策略:含电转气与碳捕集技术,结4.12MB1月前
    ZIP双碳背景下综合能源系统低碳优化调度:基于Matlab+Yalmip+Cplex实现新能源消纳与成本最小化优化,双碳背景下综合能源系统低碳优化调度研究:Matlab结合Yalmip与Cplex实现方法探5.16MB1月前
    ZIPjava Swing+JDBC+mysql实现毕业设计选题管理系统1MB1月前
    ZIP多输入单输出拟合预测模型建立与基于AOA优化的XGboost算法应用图解:高效注释详解,实用易上手,算数优化算法AOA提升XGboost预测模型效率:多输入单输出拟合预测模型,详细注释,易学习,直接应3.21MB1月前
    ZIP基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,Matlab 心音信号 心率计算 MFCC特征632.57KB1月前
    ZIPMatlab编程实现多维航迹跟踪控制与编队集群控制,应用于空中无人机等多智能体系统,Matlab编程实现多维航迹跟踪控制与编队集群控制,针对空中无人机等对象的协同避障技术,在Matlab下编程实现二维3.2MB1月前
    ZIP基于Comsol技术的狄拉克半金属BDS超材料的研究与应用,狄拉克半金属BDS超材料的Comsol探究与特性分析,Comsol狄拉克半金属BDS超材料 ,Comsol; 狄拉克半金属; BDS; 超1.19MB1月前