首页下载资源数据库一个联邦平均框架,并基于ST-GCN模型进行实验,在Kinetics和NTU60数据集上验证

ZIP一个联邦平均框架,并基于ST-GCN模型进行实验,在Kinetics和NTU60数据集上验证

2301_8048821430.2MB需要积分:1

资源文件列表:

FedAvg-ST-GCN-ice.zip 大约有80个文件
  1. FedAvg-ST-GCN-ice/
  2. FedAvg-ST-GCN-ice/Client.py 5.34KB
  3. FedAvg-ST-GCN-ice/Feeder.py 2.34KB
  4. FedAvg-ST-GCN-ice/Net_utils.py 11.03KB
  5. FedAvg-ST-GCN-ice/Readme.md 1.14KB
  6. FedAvg-ST-GCN-ice/Server.py 3.88KB
  7. FedAvg-ST-GCN-ice/__pycache__/
  8. FedAvg-ST-GCN-ice/__pycache__/Client.cpython-38.pyc 4.76KB
  9. FedAvg-ST-GCN-ice/__pycache__/Client.cpython-39.pyc 4.76KB
  10. FedAvg-ST-GCN-ice/__pycache__/Feeder.cpython-38.pyc 2.03KB
  11. FedAvg-ST-GCN-ice/__pycache__/Feeder.cpython-39.pyc 2.11KB
  12. FedAvg-ST-GCN-ice/__pycache__/Net_utils.cpython-38.pyc 7.54KB
  13. FedAvg-ST-GCN-ice/__pycache__/Net_utils.cpython-39.pyc 7.76KB
  14. FedAvg-ST-GCN-ice/__pycache__/tools.cpython-38.pyc 5.35KB
  15. FedAvg-ST-GCN-ice/__pycache__/tools.cpython-39.pyc 5.36KB
  16. FedAvg-ST-GCN-ice/client_log.txt
  17. FedAvg-ST-GCN-ice/feeder_kinetics.py 5.68KB
  18. FedAvg-ST-GCN-ice/main.py 137B
  19. FedAvg-ST-GCN-ice/net/
  20. FedAvg-ST-GCN-ice/net/__init__.py 20B
  21. FedAvg-ST-GCN-ice/net/__pycache__/
  22. FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-312.pyc 185B
  23. FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-38.pyc 145B
  24. FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-39.pyc 203B
  25. FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-312.pyc 9.64KB
  26. FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-38.pyc 6.11KB
  27. FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-39.pyc 6.18KB
  28. FedAvg-ST-GCN-ice/net/st_gcn.py 6.74KB
  29. FedAvg-ST-GCN-ice/net/st_gcn_twostream.py 789B
  30. FedAvg-ST-GCN-ice/net/utils/
  31. FedAvg-ST-GCN-ice/net/utils/__init__.py
  32. FedAvg-ST-GCN-ice/net/utils/__pycache__/
  33. FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-312.pyc 158B
  34. FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-38.pyc 121B
  35. FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-39.pyc 179B
  36. FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-312.pyc 8.21KB
  37. FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-38.pyc 5.46KB
  38. FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-39.pyc 5.39KB
  39. FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-312.pyc 3.03KB
  40. FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-38.pyc 2.47KB
  41. FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-39.pyc 2.51KB
  42. FedAvg-ST-GCN-ice/net/utils/graph.py 6.28KB
  43. FedAvg-ST-GCN-ice/net/utils/tgcn.py 2.34KB
  44. FedAvg-ST-GCN-ice/ntu_process/
  45. FedAvg-ST-GCN-ice/ntu_process/ntu_gendata.py 3.58KB
  46. FedAvg-ST-GCN-ice/ntu_process/ntu_read_skeleton.py 2.13KB
  47. FedAvg-ST-GCN-ice/resource/
  48. FedAvg-ST-GCN-ice/resource/NTU-RGB-D/
  49. FedAvg-ST-GCN-ice/resource/NTU-RGB-D/samples_with_missing_skeletons.txt 6.19KB
  50. FedAvg-ST-GCN-ice/resource/demo_asset/
  51. FedAvg-ST-GCN-ice/resource/demo_asset/attention+prediction.png 7.57KB
  52. FedAvg-ST-GCN-ice/resource/demo_asset/attention+rgb.png 6.05KB
  53. FedAvg-ST-GCN-ice/resource/demo_asset/original_video.png 5.88KB
  54. FedAvg-ST-GCN-ice/resource/demo_asset/pose_estimation.png 6.42KB
  55. FedAvg-ST-GCN-ice/resource/info/
  56. FedAvg-ST-GCN-ice/resource/info/S001C001P001R001A044_w.gif 354.64KB
  57. FedAvg-ST-GCN-ice/resource/info/S001C001P001R001A051_w.gif 407.52KB
  58. FedAvg-ST-GCN-ice/resource/info/S002C001P010R001A017_w.gif 672.5KB
  59. FedAvg-ST-GCN-ice/resource/info/S003C001P008R001A002_w.gif 504.01KB
  60. FedAvg-ST-GCN-ice/resource/info/S003C001P008R001A008_w.gif 436.17KB
  61. FedAvg-ST-GCN-ice/resource/info/clean_and_jerk_w.gif 2.18MB
  62. FedAvg-ST-GCN-ice/resource/info/demo_video.gif 5.2MB
  63. FedAvg-ST-GCN-ice/resource/info/hammer_throw_w.gif 1.13MB
  64. FedAvg-ST-GCN-ice/resource/info/juggling_balls_w.gif 1.96MB
  65. FedAvg-ST-GCN-ice/resource/info/pipeline.png 1.13MB
  66. FedAvg-ST-GCN-ice/resource/info/pull_ups_w.gif 2.5MB
  67. FedAvg-ST-GCN-ice/resource/info/tai_chi_w.gif 1.75MB
  68. FedAvg-ST-GCN-ice/resource/kinetics-motion.txt 408B
  69. FedAvg-ST-GCN-ice/resource/kinetics_skeleton/
  70. FedAvg-ST-GCN-ice/resource/kinetics_skeleton/label_name.txt 5.82KB
  71. FedAvg-ST-GCN-ice/resource/media/
  72. FedAvg-ST-GCN-ice/resource/media/clean_and_jerk.mp4 211.71KB
  73. FedAvg-ST-GCN-ice/resource/media/skateboarding.mp4 1.44MB
  74. FedAvg-ST-GCN-ice/resource/media/ta_chi.mp4 133.78KB
  75. FedAvg-ST-GCN-ice/resource/reference_model.txt 57B
  76. FedAvg-ST-GCN-ice/resource/数据集组织结构.png 152.89KB
  77. FedAvg-ST-GCN-ice/scratch.ipynb 622.17KB
  78. FedAvg-ST-GCN-ice/server_log.txt
  79. FedAvg-ST-GCN-ice/tmp.pt 11.9MB
  80. FedAvg-ST-GCN-ice/tools.py 6.23KB

资源介绍:

通信模型: NOTE:分成两个循环: 客户端 listen -> 接收模型 -> 训练一个epoch -> 发起通信 -> 上传模型 -> (重复)listen 服务器 发起通信 -> 下放模型 -> listen -> 接收模型 -> 聚合 -> (重复)发起通信
# fedavg + st_gcn ### 运行方式: 1. 创建一个虚拟环境,这里用的是python3.8,按照[GitHub - wanjinchang/st-gcn: Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch](https://github.com/wanjinchang/st-gcn) 的requirements,配置st-gcn所需环境 ``` git clone https://github.com/yysijie/st-gcn.git cd st-gcn pip install -r requirements.txt ``` 接着自行配置torch和GPU 2. 克隆本仓库代码: ``` git clone https://github.com/Duanice/FedAvg-ST-GCN.git ``` 数据集按照下图组织: ![数据集组织结构](resource/数据集组织结构.png) 4. 联邦训练:对于Kinetics数据集需要重新配置Server和Client的参数,参考st-gcn源码config文件夹下的yaml文件修改即可。在fl_st目录运行: ``` python Server.py ``` ### 通信模型: NOTE:分成两个循环: 客户端 listen -> 接收模型 -> 训练一个epoch -> 发起通信 -> 上传模型 -> (重复)listen 服务器 发起通信 -> 下放模型 -> listen -> 接收模型 -> 聚合 -> (重复)发起通信
100+评论
captcha