首页下载资源人工智能无标题代码代码代码代码代码

ZIP无标题代码代码代码代码代码

github_3389064710.51MB需要积分:1

资源文件列表:

RMTL-main.zip 大约有50个文件
  1. RMTL-main/
  2. RMTL-main/Framework.pdf 27.27KB
  3. RMTL-main/README.md 2.16KB
  4. RMTL-main/RLmain.py 1.4KB
  5. RMTL-main/SLmain.py 7.99KB
  6. RMTL-main/agents/
  7. RMTL-main/agents/DDPG_ESMM.py 12.81KB
  8. RMTL-main/agents/DDPG_ESMM_BC.py 7.81KB
  9. RMTL-main/agents/ReplayBuffer.py 1.72KB
  10. RMTL-main/agents/__pycache__/
  11. RMTL-main/agents/__pycache__/DDPG_ESMM.cpython-38.pyc 8.87KB
  12. RMTL-main/agents/__pycache__/DDPG_ESMM_BC.cpython-38.pyc 5.17KB
  13. RMTL-main/agents/__pycache__/ReplayBuffer.cpython-38.pyc 1.76KB
  14. RMTL-main/doc.md 8.15KB
  15. RMTL-main/env.py 6.12KB
  16. RMTL-main/layers/
  17. RMTL-main/layers/__pycache__/
  18. RMTL-main/layers/__pycache__/critic.cpython-38.pyc 2.04KB
  19. RMTL-main/layers/__pycache__/layers.cpython-38.pyc 1.77KB
  20. RMTL-main/layers/critic.py 2.39KB
  21. RMTL-main/layers/esmm.py 1.7KB
  22. RMTL-main/layers/layers.py 1.3KB
  23. RMTL-main/pretrain.zip 10.5MB
  24. RMTL-main/slmodels/
  25. RMTL-main/slmodels/__pycache__/
  26. RMTL-main/slmodels/__pycache__/aitm.cpython-38.pyc 2.94KB
  27. RMTL-main/slmodels/__pycache__/esmm.cpython-38.pyc 1.97KB
  28. RMTL-main/slmodels/__pycache__/layers.cpython-38.pyc 1.77KB
  29. RMTL-main/slmodels/__pycache__/mmoe.cpython-38.pyc 2.87KB
  30. RMTL-main/slmodels/__pycache__/omoe.cpython-38.pyc 2.58KB
  31. RMTL-main/slmodels/__pycache__/ple.cpython-38.pyc 3.62KB
  32. RMTL-main/slmodels/__pycache__/sharedbottom.cpython-38.pyc 1.92KB
  33. RMTL-main/slmodels/__pycache__/singletask.cpython-38.pyc 2.22KB
  34. RMTL-main/slmodels/aitm.py 2.5KB
  35. RMTL-main/slmodels/esmm.py 1.7KB
  36. RMTL-main/slmodels/layers.py 1.3KB
  37. RMTL-main/slmodels/metaheac.py 7.94KB
  38. RMTL-main/slmodels/mmoe.py 2.06KB
  39. RMTL-main/slmodels/omoe.py 2.05KB
  40. RMTL-main/slmodels/ple.py 3.8KB
  41. RMTL-main/slmodels/sharedbottom.py 1.43KB
  42. RMTL-main/slmodels/singletask.py 1.63KB
  43. RMTL-main/train/
  44. RMTL-main/train/Arguments.py 1.54KB
  45. RMTL-main/train/__pycache__/
  46. RMTL-main/train/__pycache__/Arguments.cpython-38.pyc 1.42KB
  47. RMTL-main/train/__pycache__/run.cpython-38.pyc 7.96KB
  48. RMTL-main/train/__pycache__/utils.cpython-38.pyc 7.78KB
  49. RMTL-main/train/run.py 11.62KB
  50. RMTL-main/train/utils.py 9.34KB

资源介绍:

无标题代码代码代码代码代码
# Multi-Task Recommendations with Reinforcement Learning Source code of [Multi-Task Recommendations with Reinforcement Learning](https://dl.acm.org/doi/10.1145/3543507.3583467) Code for RetailRocket Dataset. **Google Drive link for processed RetailRocket data:** https://drive.google.com/file/d/1THRWKttdpmcNaEc1DtKwxgYlV8RLMtV5/view?usp=sharing # Model Code + layers: stores common network structures + critic: critic network + esmm: esmm(actor) network, can introduce other MTL models as actor inside slmodels + layers: classical Embedding layers and MLP layers + slmodels: SL baseline models + agents: RL models + train: training-related configuration + env.py: offline sampling simulation environment + RLmain.py: main RL training program + SLmain.py: SL training main program + dataset + rtrl:retrailrocket dataset(Convert to MDP format:)[timestamp,sessionid,itemid,pay,click], [itemid,feature1,feature2,..],6:2:2 # How to run it ## MTL baselines python3 SLmain.py --model_name=esmm ## RMTL python3 RLmain.py python3 SLmain.py --model_name=esmm --polish=1 ## Result: test: best auc: 0.732444172986328 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 134/134 [00:07<00:00, 19.14it/s] task 0, AUC 0.7273702846096346, Log-loss 0.20675417715656488 task 1, AUC 0.7247954179346048, Log-loss 0.048957254763240504 # Citation: Please cite with the below bibTex if you find it helpful to your research. ``` @inproceedings{liu2023multi, title={Multi-Task Recommendations with Reinforcement Learning}, author={Liu, Ziru and Tian, Jiejie and Cai, Qingpeng and Zhao, Xiangyu and Gao, Jingtong and Liu, Shuchang and Chen, Dayou and He, Tonghao and Zheng, Dong and Jiang, Peng and others}, booktitle={Proceedings of the ACM Web Conference 2023}, pages={1273--1282}, year={2023} } ```
100+评论
captcha