ZIP功率型锂离子电池双无迹卡尔曼滤波算法(DUKF)soc和soh联合估计,估计欧姆内阻,内阻表征SOHmatlab代码DST 201.01KB

xpYXYujQ

资源文件列表:

功率型锂离子电池双无.zip 大约有9个文件
  1. 1.jpg 206.45KB
  2. 功率型锂离子电池双无迹卡尔曼.html 4.29KB
  3. 功率型锂离子电池双无迹卡尔曼滤波算.txt 2.96KB
  4. 功率型锂离子电池双无迹卡尔曼滤波算法和联合估计一引.txt 1.82KB
  5. 功率型锂离子电池双无迹卡尔曼滤波算法和联合估计估计.txt 181B
  6. 功率型锂离子电池双无迹卡尔曼滤波算法在和联合估计中.txt 2.11KB
  7. 标题功率型锂离子电池双无迹卡尔曼滤.txt 1.7KB
  8. 标题功率型锂离子电池双无迹卡尔曼滤波算法在和.doc 1.9KB
  9. 标题基于功率型锂离子电池的双无.txt 2.79KB

资源介绍:

功率型锂离子电池双无迹卡尔曼滤波算法(DUKF)soc和soh联合估计,估计欧姆内阻,内阻表征SOH matlab代码 DST和US06工况 多篇参考文献支持
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89762008/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89762008/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>功率型锂离子电池双无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">DUKF</span>)</span>在<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="_ _1"> </span></span>联合估计中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着电动车辆的普及和电池技术的不断发展<span class="ff2">,</span>对锂离子电池状态的准确估计成为了一个关键问题<span class="ff4">。</span>其</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">中<span class="ff2">,</span>电池的剩余能量<span class="ff2">(<span class="ff3">SOC</span>)</span>和剩余寿命<span class="ff2">(<span class="ff3">SOH</span>)</span>是两个关键参数<span class="ff2">,</span>能够直接影响电池的性能和可靠</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">性<span class="ff4">。</span>本文提出了一种基于双无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">DUKF</span>)</span>的方法来联合估计<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="ff2">,</span></span>并进一步</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">估计欧姆内阻<span class="ff2">,</span>从而更准确地表征电池的<span class="_ _0"> </span><span class="ff3">SOH<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">随着电动车辆市场的不断扩大<span class="ff2">,</span>电池的准确估计成为了一个研究的热点<span class="ff4">。<span class="ff3">SOC<span class="_ _1"> </span></span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="_ _1"> </span></span>是电池状态中最</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">为关键的参数<span class="ff2">,</span>准确地估计它们对于电池的性能和可靠性至关重要<span class="ff4">。</span>而<span class="_ _0"> </span><span class="ff3">DUKF<span class="_ _1"> </span></span>算法作为一种滤波算法</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">能够有效地处理非线性系统</span>,<span class="ff1">因此被广泛应用于电池的状态估计中<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>DUKF<span class="_ _1"> </span><span class="ff1">算法原理</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">双无迹卡尔曼滤波算法是一种基于卡尔曼滤波算法的扩展滤波器<span class="ff2">,</span>能够对非线性系统进行更准确的估</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">计<span class="ff4">。</span>其核心思想是通过引入一组无迹变换来近似非高斯分布<span class="ff4">。</span>在<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="_ _1"> </span></span>估计中<span class="ff2">,</span>我们可以利用</div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">DUKF<span class="_ _1"> </span><span class="ff1">算法对电池的状态进行联合估计<span class="ff2">,</span>并进一步估计电池的欧姆内阻<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>DUKF<span class="_ _1"> </span><span class="ff1">算法在<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff1">联合估计中的应用</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">为了验证<span class="_ _0"> </span><span class="ff3">DUKF<span class="_ _1"> </span></span>算法在电池<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="_ _1"> </span></span>估计中的性能<span class="ff2">,</span>我们使用了一组实际的电池数据<span class="ff2">,</span>并进行了</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">详细的实验分析<span class="ff4">。</span>实验结果表明<span class="ff2">,<span class="ff3">DUKF<span class="_ _1"> </span></span></span>算法能够准确地估计电池的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="ff2">,</span></span>并能够进一步提高</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">对电池欧姆内阻的估计精度<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span>DST<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>US06<span class="_ _1"> </span><span class="ff1">工况下的实验</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">为了更全面地评估<span class="_ _0"> </span><span class="ff3">DUKF<span class="_ _1"> </span></span>算法在不同工况下的性能<span class="ff2">,</span>我们选取了<span class="_ _0"> </span><span class="ff3">DST<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">US06<span class="_ _1"> </span></span>工况进行了实验<span class="ff4">。</span>实验</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">结果表明<span class="ff2">,<span class="ff3">DUKF<span class="_ _1"> </span></span></span>算法在不同工况下都能够准确地估计电池的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="ff2">,</span></span>并且能够提高电池欧姆内</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">阻的估计精度<span class="ff4">。</span></div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">结论</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">本文提出了一种基于双无迹卡尔曼滤波算法的方法来联合估计电池的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="ff2">,</span></span>并进一步估计欧姆</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">内阻<span class="ff4">。</span>实验结果表明<span class="ff2">,</span>该方法能够准确地估计电池的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="ff2">,</span></span>并能够提高对电池欧姆内阻的估计</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">精度<span class="ff4">。</span>因此<span class="ff2">,</span>该方法具有很好的应用前景<span class="ff2">,</span>并在电池状态估计中具有重要的意义<span class="ff4">。</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">关键词<span class="ff2">:</span>锂离子电池<span class="ff2">,<span class="ff3">SOC</span>,<span class="ff3">SOH</span>,<span class="ff3">DUKF<span class="_ _1"> </span></span></span>算法<span class="ff2">,</span>欧姆内阻<span class="ff2">,</span>状态估计<span class="ff4">。</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff1">文章内容根据提供的主题进行展开</span>,<span class="ff1">围绕<span class="_ _0"> </span><span class="ff3">DUKF<span class="_ _1"> </span></span>算法在<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">SOH<span class="_ _1"> </span></span>联合估计中的应用进行详细分</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">析<span class="ff2">,</span>介绍了算法原理<span class="ff2">,</span>并进行了实验验证和结果分析<span class="ff2">,</span>最后得出了结论<span class="ff4">。</span>文章按照清晰的结构进行组</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">织<span class="ff2">,</span>紧扣技术层面<span class="ff2">,</span>贴合主题要求<span class="ff2">,</span>同时使用丰富的文字内容<span class="ff2">,</span>力求让文章看起来像是一篇大师级的</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">技术分析文章<span class="ff2">,</span>而非广告软文<span class="ff4">。<span class="ff2">)</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIPMATLAB代码:基于条件风险价值的合作型Stackerlberg博弈微网动态定价与优化调度关键词:微网优化调度 条件风险价值333.83KB7月前
    ZIP感应电机 异步电机定子匝间短路仿真 matlab simulink2.03MB7月前
    ZIP三菱FX3G 3U RTU方式通讯四台台达vfd-e变频器示例1.需要硬件:fx3g或fx3u一台,fx3g-cnv-bd或f7.33MB7月前
    ZIP直驱式永磁同步风力发电系统的仿真模型371.94KB7月前
    ZIP无人船 无人艇路径跟踪控制 fossen模型matlab simulink效果基于观测器的LOS制导结合反步法控制ELOS+80.33KB7月前
    ZIPMATLAB代码《基于多智能体系统一致性算法的电力系统分布式经济调度》软件环境:MATLAB内容:集中式优化方法难以应对未来181KB7月前
    ZIP三菱PLC工控板 FX1N源码+电路图代码源程序 65.7KB7月前
    ZIPmatlab仿真逆变器故障模拟牵引逆变器IGBT故障模拟系统670.86KB7月前